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Abstract 
Melissa officinalis L., colloquially termed 
lemon balm, stands as a preeminent 
medicinal herb lauded for its intricate 
phytochemical matrix and diverse 
therapeutic applications. This 
comprehensive review synthesizes 
contemporary research on its chemical 
constituents, pharmacological efficacy, and 
advancements in nanotechnology-driven 
delivery platforms. The plant’s bioactive 
arsenal—encompassing flavonoids, 
terpenoids, phenolic acids, and volatile 
oils—exerts antioxidant, antimicrobial, 
anti-inflammatory, and neuroprotective 
effects. Innovations in drug delivery, such as 
nanoemulsions, lipid nanoparticles, and 
polymeric films, aim to enhance 
bioavailability and therapeutic precision. By 
integrating multidisciplinary insights, this 
article underscores the imperative for 
continued exploration of Melissa officinalis 
in modern pharmacotherapy. 
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Introduction 
The utilization of botanical resources for 
therapeutic purposes has been a 
cornerstone of human healthcare since 
antiquity, with evidence of herbal medicine 
practices documented across ancient 
civilizations such as Mesopotamia, Egypt, 
and China (Heinrich et al., 2021). These 
traditions evolved into sophisticated 
systems, including Ayurveda and Traditional 
Chinese Medicine, which continue to 
influence modern phytotherapy (Yuan et al., 
2016). The 19th century heralded a 
transformative era with the isolation of 
bioactive alkaloids like morphine from 
Papaver somniferum and quinine from 
Cinchona bark, marking the dawn of 
pharmacognosy (Sneader, 2005). 
Subsequent advancements in synthetic 
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chemistry during the 20th century led to the 
proliferation of industrially produced 
pharmaceuticals, yet natural compounds 
remain indispensable, particularly in low- 
and middle-income nations where access to 
synthetic drugs is limited (Newman & 
Cragg, 2020). According to the World 
Health Organization (WHO, 2023), 
approximately 80% of populations in 
developing regions depend on plant-based 
remedies for primary healthcare, 
underscoring their enduring relevance. 
 
Medicinal flora are revered not only for their 
therapeutic efficacy but also for their role as 
reservoirs of bioactive molecules, which 
serve as precursors for semi-synthetic drug 
development (Veeresham, 2012). For 
instance, the antimalarial drug artemisinin, 
derived from Artemisia annua, exemplifies 
the synergy between traditional knowledge 
and modern pharmacology (Tu, 2011). 
Bioactive constituents, including alkaloids, 
terpenoids, and polyphenols, are 
heterogeneously distributed across plant 
organs—seeds, roots, leaves, and 
flowers—each contributing unique 
pharmacological activities (Pan et al., 2014). 
These compounds often exhibit pleiotropic 
effects, modulating multiple biological 
pathways to confer health benefits (Hussain 
et al., 2012). 
 
Melissa officinalis L. (Lamiaceae), 
commonly termed lemon balm, epitomizes 
the intersection of traditional herbalism and 
contemporary scientific inquiry. Indigenous 
to the Mediterranean Basin and Western 
Asia, this perennial herb has been cultivated 
across Europe for centuries, prized for its 
nervine, digestive, and antiviral properties 
(Moradkhani et al., 2010). Morphologically, 
M. officinalis is characterized by a robust, 
erect habit (60–100 cm height), with 

cordate, serrated leaves (2–8 cm length) 
adorned with glandular trichomes that 
secrete volatile oils (Miraj & Kiani, 2016). Its 
rhizomatous root system enhances drought 
resilience, enabling adaptation to diverse 
agroclimatic conditions (Zhishen et al., 
2019). Despite its horticultural vigor—often 
leading to invasive growth in gardens—the 
plant’s leaves remain a focal point for 
phytochemical extraction due to their high 
concentration of bioactive metabolites 
(Kennedy & Wightman, 2011). 
 
This review delineates the phytochemical 
complexity of M. officinalis, emphasizing its 
volatile oils, triterpenes, and polyphenolic 
fractions, which underpin its broad-spectrum 
pharmacological activities. Contemporary 
research has increasingly focused on 
nanotechnology-driven delivery systems, 
such as nanoemulsions and lipid-based 
carriers, to overcome limitations associated 
with traditional formulations, including poor 
bioavailability and chemical instability (Jafari 
et al., 2017). By synthesizing recent 
advancements, this work aims to elucidate 
the potential of M. officinalis in modern 
therapeutics, particularly through optimized 
drug delivery platforms. 

Phytochemical 
Composition 
The pharmacological efficacy of Melissa 
officinalis is inextricably linked to its intricate 
phytochemical matrix, which has been 
extensively characterized using 
chromatographic and spectroscopic 
techniques (Dastmalchi et al., 2008). 
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Volatile Constituents 
Steam distillation of aerial parts yields an 
essential oil (0.1–0.3% w/w) dominated by 
oxygenated monoterpenes, notably citral—a 
racemic blend of geranial (trans-citral) and 
neral (cis-citral)—which constitutes 50–70% 
of the oil (Kowalski et al., 2015). Minor 
constituents include citronellal (3–8%), 
geraniol (2–5%), and sesquiterpenes such 
as β-caryophyllene (Nurzynska-Wierdak et 
al., 2013). Regional variations significantly 
influence oil composition; for example, 
Jordanian M. officinalis essential oil exhibits 
elevated β-caryophyllene levels (12.4%) 
compared to Polish cultivars (Barakat et al., 
2019). Seasonal dynamics also modulate 
yield, with maximal citral concentrations 
observed during flowering stages (Ghasemi 
Pirbalouti et al., 2014). 

Triterpenes and Saponins 
Non-volatile fractions of M. officinalis are 
enriched with pentacyclic triterpenes, 
including ursolic acid and oleanolic acid, 
which demonstrate anti-inflammatory and 
pro-apoptotic activities (Mencherini et al., 
2007). Sulfated derivatives, such as ursene 
glycosides isolated from stem extracts, 
exhibit unique bioactivity, though their 
pharmacokinetic profiles remain under 
investigation (Mencherini et al., 2012). 
Triterpenoid saponins, though less studied, 
contribute to the plant’s adaptogenic 
properties, potentially enhancing stress 
resilience (Ghosh et al., 2010). 

Polyphenolic Profile 
Phenolic acids and flavonoids constitute the 
cornerstone of M. officinalis’s antioxidant 
capacity. Rosmarinic acid, a caffeic acid 
ester, dominates the phenolic profile 

(86,637 μg/g in methanolic extracts), 
followed by chlorogenic and caffeic acids 
(Ghiulai et al., 2020). Flavonoids such as 
luteolin, quercetin, and apigenin glycosides 
further augment radical-scavenging activity 
(Zheng & Wang, 2001). 
Ultrasonication-assisted extraction with 
polar solvents (e.g., 80% ethanol) enhances 
phenolic recovery by disrupting cell walls, 
achieving yields 30% higher than 
conventional maceration (Azwanida, 2015). 

Volatile Compounds: 
Extraction and Variability 
The pharmacodynamic potency of M. 
officinalis essential oil is contingent upon 
extraction methodology and plant 
provenance. Hydrodistillation, while 
traditional, often degrades thermolabile 
compounds; conversely, supercritical CO₂ 
extraction preserves delicate monoterpenes 
but requires costly infrastructure 
(Pourmortazavi & Hajimirsadeghi, 2007). 
GC-MS analyses of Polish cultivars 
identified geranial (45.2%) and neral 
(33.8%) as predominant monoterpenes, 
with trace amounts of linalool (<1%) 
contributing to olfactory complexity 
(Nurzynska-Wierdak et al., 2013). 
Comparative phytochemical studies 
underscore ecotypic divergence: 
Mediterranean accessions yield higher citral 
concentrations, whereas Central Asian 
variants are richer in sesquiterpene 
hydrocarbons (Barra et al., 2010). 

Triterpenes and Polyphenols: 
Structural and Functional 
Insights 
Triterpenes, classified into ursane, 
oleanane, and lupane groups, interact with 
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cellular membranes and signaling pathways 
to exert anti-proliferative effects (Liby et al., 
2007). Ursolic acid, for instance, inhibits 
NF-κB and COX-2 pathways, attenuating 
inflammation in murine colitis models (Jang 
et al., 2014). Polyphenols, particularly 
rosmarinic acid, chelate transition metals 
and scavenge ROS, mitigating oxidative 
stress in neuronal cells (Petersen & 
Simmonds, 2003). Structure-activity 
relationships reveal that ortho-dihydroxy 
groups in phenolic acids enhance free 
radical neutralization, a property exploited in 
nutraceutical formulations (Rice-Evans et 
al., 1996). 

Methodological 
Advancements in 
Phytochemical Analysis 
Modern techniques such as 
UPLC-QTOF-MS and NMR metabolomics 
have revolutionized the characterization of 
M. officinalis’s secondary metabolites 
(Farag et al., 2012). For instance, 
SPME-GC-MS has enabled non-destructive 
profiling of volatile emissions from live 
plants, revealing diurnal fluctuations in 
terpene synthesis (Rohloff et al., 2005). 
Such innovations not only refine extraction 
protocols but also facilitate the discovery of 
novel bioactive compounds with therapeutic 
potential. 

Pharmacological 
Investigations and 
Therapeutic 
Applications 
Extensive empirical research has 
established that botanical extracts and 
volatile oils derived from medicinal plants, 
including Melissa officinalis L., exhibit a 
broad spectrum of bioactivities with 
significant therapeutic implications 
(Sánchez-Camargo et al., 2019). The 
pharmacological prominence of M. 
officinalis is predominantly attributed to its 
polyphenolic constituents—notably phenolic 
acids (e.g., rosmarinic acid) and flavonoids 
(e.g., luteolin)—which mediate antioxidant, 
antiproliferative, and antimicrobial effects 
through multifaceted molecular mechanisms 
(Miraj & Kiani, 2016). Contemporary studies 
have prioritized leaf-derived extracts due to 
their enriched phenolic profiles, which 
correlate with diverse biological activities 
such as antiangiogenic, antiviral, and 
neuroprotective actions (Shakeri et al., 
2017). 

Antioxidant and Anticancer 
Properties 
A seminal comparative analysis by Moaca 
et al. (2018) evaluated the bioactivity of 
stem and leaf ethanolic extracts, revealing 
that leaf extracts exhibited superior 
antioxidant capacity (32.76 mg gallic acid 
equivalents/g) compared to seed extracts 
(8.4 mg GAE/g). This disparity was 
attributed to the higher polyphenol density in 
foliar tissues. Furthermore, in vitro assays 
using MDA-MB-231 breast cancer cells 
demonstrated dose-dependent cytotoxicity, 
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suggesting potential antitumor applications. 
Ghiulai et al. (2020) expanded these 
findings by investigating the 
chemopreventive efficacy of M. officinalis 
extracts in breast cancer models. Utilizing 
the chorioallantoic membrane (CAM) assay, 
they identified 96% ethanolic extracts as the 
most potent inhibitors of angiogenesis, a 
critical process in tumor metastasis. 
Additionally, ethanolic extracts exhibited 
marked antiproliferative effects against 
human colon adenocarcinoma (HCT-116) 
and gastric carcinoma (AGS) cell lines, 
underscoring their broad-spectrum 
anticancer potential (Kowalczyk et al., 
2020). 

Antimicrobial and Antiviral 
Mechanisms 
The essential oil of M. officinalis, rich in 
citral isomers, has demonstrated robust 
antimicrobial activity against pathogens 
such as Staphylococcus aureus and 
Escherichia coli (Usach et al., 2021). In a 
comparative study, phospholipid vesicles 
loaded with citral exhibited enhanced 
bactericidal efficacy compared to those 
containing Citrus limon essential oil, likely 
due to citral’s ability to disrupt microbial cell 
membranes (Usach et al., 2021). Antiviral 
applications were explored by Vanti et al. 
(2021), who engineered 
glycerosomes—nanoscale vesicles 
composed of phosphatidylcholine and 
glycerol—to encapsulate M. officinalis 
essential oil. These glycerosomes inhibited 
herpes simplex virus type 1 (HSV-1) 
replication in vitro without inducing 
cytotoxicity, highlighting their potential for 
topical antiviral therapies. Complementary 
research by Rechia et al. (2022) developed 
starch-glycerol polymeric films infused with 
hydroalcoholic extracts, which improved 

drug retention and patient compliance in 
labial herpes treatment. 

Neuroprotective and 
Anxiolytic Effects 
In vivo studies have elucidated the 
neuropharmacological benefits of M. 
officinalis extracts. Rosmarinic acid, a 
dominant phenolic compound, modulates 
γ-aminobutyric acid (GABA) transmission, 
alleviating anxiety-like behaviors in rodent 
models (Awad et al., 2009). Clinical trials 
further corroborate these findings, with 
lemon balm supplementation improving 
cognitive function in Alzheimer’s patients, 
likely via acetylcholine esterase inhibition 
and oxidative stress mitigation 
(Akhondzadeh et al., 2003). 

Innovative Delivery Systems 
Advances in nanotechnology have 
revolutionized the delivery of M. officinalis 
bioactives, addressing challenges such as 
poor solubility and rapid degradation. 
Sguizzato et al. (2021) pioneered the 
encapsulation of caffeic acid into solid lipid 
nanoparticles (SLNs) using poloxamer 
surfactants, achieving enhanced dermal 
penetration and oxidative stability. 
Comparative studies by Hallan et al. (2020) 
demonstrated that ethosomal vesicles 
outperformed SLNs in transdermal caffeic 
acid delivery, attributed to their flexibility and 
improved skin permeation. For oncological 
applications, Nordin et al. (2022) developed 
citral-loaded nanostructured lipid carriers 
(NLCs), which exhibited selective 
cytotoxicity against triple-negative breast 
cancer cells (MDA-MB-231) while sparing 
healthy tissues. 
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Dosage Translation and 
Safety Considerations 
Translating efficacious animal doses to 
human equivalents (HED) remains a critical 
challenge in herbal drug development. The 
FDA’s body surface area (BSA) 
normalization method is widely employed, 
where  
HED=Animal Dose×(Animal Km/Human 
Km) 
HED=Animal Dose×(Animal Km/Human 
Km), ensuring safety and minimizing toxicity 
risks (Reagan-Shaw et al., 2008). 

Conclusion and Future 
Perspectives 
Melissa officinalis stands as a 
pharmacognostic treasure, its 

phytochemical richness underpinning 
applications ranging from oncology to 
dermatology. Nanoengineered delivery 
systems—such as lipid nanoparticles, 
polymeric films, and 
glycerosomes—augment bioavailability and 
therapeutic precision, bridging traditional 
herbalism with modern medicine. Future 
research must prioritize clinical validation, 
dose optimization, and sustainable 
cultivation practices to fully harness this 
plant’s potential. As nanotechnology 
evolves, M. officinalis may emerge as a 
cornerstone in personalized and targeted 
therapies, redefining its role in global 
healthcare paradigms. 
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