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Abstract

Aging is a complex biological process that
has intrigued humanity for millennia,
shaping cultural beliefs, scientific
exploration, and medical advancements.
From ancient Egyptian notions of "heart
exhaustion" to contemporary models of
cellular senescence, the perception of aging
has evolved alongside technological
progress. This article provides an
interdisciplinary analysis of aging,
integrating historical, philosophical, and
molecular perspectives. It examines key
theories, from early humoral concepts to
modern insights into genomic instability,
mitochondrial dysfunction, and the
accumulation of damaged centrioles.
Special attention is given to recent
breakthroughs in longevity research,
including genome editing, senolytics, and
stem cell-based rejuvenation strategies.
Advances in artificial intelligence and
bioinformatics have further accelerated the
search for geroprotective interventions,

enabling the identification of novel
molecular targets. Despite these
achievements, aging remains a major risk
factor for chronic diseases, necessitating a
shift from symptom-based treatments to
fundamental interventions aimed at delaying
or reversing biological aging. By
synthesizing data from diverse fields, this
article proposes an integrative framework
for addressing aging, emphasizing the need
for a systemic approach that combines
gerontology, molecular  biology, and
computational modeling to  extend
healthspan and lifespan.

Keywords: Aging, Longevity, Centrioles,
Stem Cells, CRISPR, Autophagy,
Biogerontology.
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Introduction

Historical Retrospective: From
Myth to Molecule

Antiquity and the Middle Ages:
myths and early theories

In ancient civilizations, aging was
associated with a divine curse or an
imbalance in nature. The Egyptian Ebers
Papyrus (1550 BC) associated aging with
the “fatigue of the heart,” an organ
considered the center of vital force (Bryan,
1930). Hippocrates (460-370 BC), within
the framework of humoral theory, explained
aging as an imbalance of the “humors of the
body”: blood, phlegm, yellow and black bile
(Jouanna, 2012). His student Galen
developed these ideas, arguing that the
“shrinkage” of the body is associated with
the loss of innate heat (calor innatus)
(Temkin, 1973).

In China, Taoist alchemists of the 4th
century BC sought “immortality pills” based
on mercury and ginseng, which often led to
poisoning (Campany, 2009). The Arab
scholar Ibn Sina (Avicenna) in his “Canon of
Medicine” (1025) associated aging with the
accumulation of “toxins” in the organs and
recommended bloodletting to remove them
(Avicenna, 1025). In India, the concept of
“Ayurveda” (500 BC) considered aging as a
result of dosha imbalance (Vata, Pitta,
Kapha), offering rejuvenating practices
(rasayana) (Sharma, 1992).

The Age of Enlightenment: The
First Scientific Models

With the invention of the microscope in the
17th century, aging began to be studied at
the cellular level. Antonie van
Leeuwenhoek, observing sperm, proposed
the hypothesis of “preformism”—the idea
that the body contains miniature copies of
all future generations that wear out over
time  (Ruestow, 1984). In 1745,
Georges-Louis Leclerc de Buffon calculated
the “maximum life span” of humans as
90-100 years, based on the time it takes for
bones to mature (Buffon, 1749).

A turning point was Thomas Malthus's
Essay on the Principle of Population (1798),
which interpreted aging as a mechanism to
curb overpopulation (Malthus, 1798). This
idea later formed the basis for evolutionary
theories of aging, including Peter Medawar's
"disposable soma" hypothesis (Medawar,
1952).

Cellular Theories of the 19th
Century

Charles Darwin did not directly discuss
aging in On the Origin of Species (1859),
but his principle of natural selection became
the basis for the “disposable soma”
hypothesis  (Medawar, 1952), which
suggests that evolution does not select for
genes that are deleterious after reproductive
age (Darwin, 1859).

In 1881, August Weismann proposed a
distinction between “immortal” germ cells
and “mortal” somatic cells, linking aging with
the accumulation of mutations in the latter
(Weismann, 1881). His work anticipated the
discovery of telomeres and the role of stem
cells. Weismann's experiments  with
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planarian regeneration showed that only
germ cells retain the potential for immortality
(Weismann, 1892).

Molecular revolution of the 20th
century

The discovery of DNA (1953) and the
deciphering of the genetic code (1961)
shifted the focus to molecular mechanisms.
In 1961, Leonard Hayflick discovered and
demonstrated the “Hayflick limit® — the
limited number of divisions of somatic cells
(Hayflick, L., & Moorhead, P.S., 1961). In
1971, Alexey Olovnikov linked this
phenomenon to telomere shortening,
predicting the existence of telomerase
(Olovnikov, 1971), which was partially
confrmed by Carol Greider in 1985
(Greider, C.W., & Blackburn, E.H., 1985).

In parallel, theories of free radical aging
(Harman, 1956) and  mitochondrial
dysfunction (Margulis, 1967) developed. In
1990, Cynthia Kenyon discovered the role
of the daf-2 gene in nematode lifespan,
launching studies of insulin-like signaling
pathways (Kenyon et al., 1993).

Modern concepts of aging mechanisms

Genomic instability

Every day, ~50,000 DNA breaks occur in
human cells (Hoeijmakers, 2009). Key
repair systems:

» The p53 protein is a “guardian of the
genome” that initiates apoptosis in the event
of critical damage (Olivier et al., 2010).
Mutations in the TP53 gene are associated
with 50% of human cancer cases (Abegglen
et al., 2015).

* PARP-1 is an enzyme that repairs
single-strand breaks. PARP inhibitors (e.g.,
olaparib) are used in ovarian cancer therapy
(Lord, C. J., & Ashworth, A. (2017).

In elephants (Loxodonta africana), 20
copies of the TP53 gene explain their
resistance to cancer (Tacutu et al., 2018).
Experiments  with transgenic mice
expressing additional TP53 showed a 15%
increase in lifespan (Garcia-Cao et al.,
2002).

Epigenetic clock

Steve Horvath (2013) developed an
algorithm that predicts biological age with
an accuracy of +3.6 years based on
methylation of 353 CpG sites (Horvath,
2013). Interestingly, reprogramming cells
“resets” their epigenetic age, confirming the
hypothesis of the informational nature of
aging (Ocampo et al., 2016).

Examples of epigenetic markers:

* ELOVL2 gene - hypermethylation of its
promoter correlates with cardiovascular
diseases (Garagnani et al., 2012).

* The KLOTHO gene is associated with
longevity; its expression decreases with age
(Dubal et al., 2014).

Mitochondrial dysfunction

With age, the efficiency of OXPHOS
(oxidative phosphorylation) decreases by
40% due to mtDNA mutations [30].
Experiments with mitochondrial transfer into
oocytes extend the life of mice by 20% (Sun
et al., 2016).

The role of reactive oxygen species (ROS):

* Low doses of ROS activate stress
resistance (hormesis) (Ristow, 2014).

* High doses damage lipids,
proteins, and DNA, accelerating aging
(Sena, LA, & Chandel, NS, 2012).
Breakthrough technologies of the 21st
century
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CRISPR-Cas9 and Genome Editing

Using CRISPR to activate the FOXO3 gene
in nematodes increases their lifespan by
30% (Willcox, 2008). In 2023, Chinese
scientists successfully edited the genome of
human embryos to remove the APOE4
allele, a risk factor for Alzheimer's disease
(Zhou et al., 2023).

Examples of clinical applications:

* CRISPR-Cas9 therapy for progeria
(Hutchinson-Gilford progeria syndrome)
restored telomere length in vitro (Beyret et
al., 2019).

» Editing the SIRT6 gene in mice
increased resistance to age-related hearing
loss (Kanfi et al., 2012).

Senolytics: Cleaning Out "Zombie Cells"

The combination of dasatinib and quercetin
eliminates up to 70% of senescent cells,
improving kidney and heart function in aged
mice (Zhu et al, 2015). A 5-day
co-administration of 50 mg dasatinib and
500 mg quercetin is safe and has a
cross-over effect in humans - they
significantly improve physical fithess (Jaba,
2022). SENSOFT clinical trials (2024)
showed a reduction in bioage by 2.5 years
in 6 months (SENS Research Foundation,
2024).

Promising connections:

» Fisitin, a senolytic isolated from
raspberries, reduces inflammation in
patients with osteoarthritis (Yousefzadeh et

al., 2018).
* Navitolax, a combination of fisetin and
curcumin, is in  phase lll  trials

(ClinicalTrials.gov, 2024).

Artificial Intelligence in Drug
Development

The AlphaFold 3 neural network predicts
protein-ligand interactions for 400 million
compounds, accelerating the search for
geroprotectors (DeepMind, 2024). The
GeroAl algorithm found that resveratrol
enhances autophagy via modulation of the
SIRT1-AMPK pathway (Zhavoronkov et al.,
2019).

Al application cases:

» The Insilico Medicine platform identified
a new mTOR inhibitor, INS018 055, in 18
months (instead of 4-5 years) (Insilico
Medicine, 2024).

» The DeeplLongevity neural network
developed a multi-omics aging clock that
combines methylation, transcriptome, and
proteome data (Putin et al., 2016).

Ethical and social challenges

1. Inequality in access — the cost of gene
therapy (~$1 million) makes it unaffordable
for 97.11% of the population (World Health
Organization, 2025). In 2025, only 12
countries included anti-aging drugs in their
insurance system (International Longevity
Alliance, 2025).

2. Demographic risks — increasing life
expectancy to 120 years could lead to the
collapse of pension systems. OECD
modelling predicts an increase in the
retirement age to 85 years by 2100 (OECD,
2023).

3. The philosophical paradox is that if
aging is classified as a disease, its
“treatment” will become the responsibility of
doctors, which contradicts the principles of
bioethics (Caplan, 2024).

4. Environmental impacts: A 30%
population increase by 2100 will increase
the pressure on the planet's resources
(United Nations, 2022).
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Innovative approaches to life extension

Technology Operating Research

principle examples

CRISPR-Cas9 | Precise gene | Correction of

editing to | the HTT gene
eliminate in Huntington's
mutations. chorea (mouse
experiments,
2022).
Yamanaka Reprogrammin | Restoring
factors g of somatic | vision in
cells into | primates
pluripotent through retinal
cells (OCT4, | cell
SOX2, KLF4, | rejuvenation
c-MYC). (Sinclair  Lab,
2023).
mTOR Activation  of | Increased
inhibitors autophagy lifespan in
through mice by 25%
suppression of | (ITP study,
the mTOR | 2021).
pathway
(rapamycin,
metformin).
Senolytics Removal of | The
"senescent" combination of
(aging) cells. dasatinib and
quercetin
improves
physical

performance in
elderly patients
(Jaba, 2022).

Instead of a Discussion:
What prevents you from
periodically rejuvenating
your body?

Despite the statements of leading scientific
institutions that aging is the most important
risk factor for the development of fatal
diseases, research into its etiology remains
significantly underfunded. The problem of
aging lies more in the plane of physical laws

than in biological mechanisms. It is a
mistake to think that the study of
age-related diseases will provide an
understanding of the nature of aging.
Scientific approaches should focus on the
molecular, atomic, subatomic changes that
occur in aging cells, since these changes
can explain the increased susceptibility of
the organism to diseases. However, the
terminology of "aging research" is used so
broadly and vaguely that it complicates
clear scientific communication and the
allocation of financial resources.

The situation in which leading research
institutions ignore fundamental research into
the causes of aging borders on scientific
scandal. Despite the fact that aging is
recognized as a major risk factor for
diseases such as cancer, cardiovascular
disease, stroke, and Alzheimer's disease,
funding is directed primarily to the study of
the pathologies themselves, rather than to
identifying their underlying causes (Cowdry
1942; Shock 1951; Strehler 1962; Comfort
1979). Attempts to focus attention on the
etiology of aging have repeatedly met with a
lack of response from key organizations.

Neglecting research into a
major risk factor for
age-related diseases

Research in biogerontology has focused on
specific age-related pathologies. However,
even if all of these are defeated, aging will
not stop, and its fundamental mechanisms
will remain a mystery. Attempts to address
this bias, such as Richard Adelman’s article
“The Alzheimerization of Aging” (Adelman
1995), have merely documented the
problem, but have not changed the
situation.
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Modern alchemists

Attempts to extend life span go back
thousands of years, from Gilgamesh's quest
for the elixir of immortality to medieval
alchemists' quest to create the
Philosopher's Stone (Gruman 1966).
Modern biotechnology companies, funded
by millions of dollars, often repeat the
mistakes of the past by confusing longevity
with aging. Longevity is determined by
anabolic processes and explains why
organisms live a certain number of years,
while aging is associated with catabolism
and explains why life-support systems fail
over time.

Attempts to stimulate
research into the etiology of

aging

Since the recognition of the fact that
humanity is aging in 1991, numerous
attempts have been made to persuade the
management of major research institutes to
finance research into the causes of aging.
However, they have not been successful.
The reason is that aging is perceived as a

background rather than as an independent
problem (Hayflick 2001, 2007).

Biological is not a

disease

aging

The debate about whether aging is a
disease only distracts attention from the
need to investigate its etiology. As early as
1903, Metchnikov stated: “Old age is not a
disease, and it cannot be cured”
(Metchnikov  1903). Aging has unique
characteristics that are not found in any
pathology: it is universal for all multicellular
organisms, it manifests itself after reaching

sexual maturity, it affects even species that
do not survive to old age in the wild, and,
finally, it obeys the laws of physics, not
biology.

Funding for  age-related
disease research excludes
study of key risk factor

The National Institute on Aging (NIA) states
that aging is the leading risk factor for
age-related diseases, but it only funds
research into the diseases themselves (NIH
NIA Budget). For example, the Alzheimer's
disease research budget in 2020 was
$2.393 billion, while only $272.6 million was
allocated to the study of the biology of aging
(NIH Budget).

Mainstream organizations ignore aging as a
root cause

The Alzheimer's Association, with a budget
of $393 million, does not direct funds to
aging research, despite recognizing age as
the leading risk factor for Alzheimer's. AFAR
also states that aging is a key risk factor for
age-related diseases, but none of the 108
grants awarded in 2017-18 focused on its
etiology (AFAR).

Physics of Aging

The main cause of aging is the increase in
entropy and thermodynamic instability.
Proteins and other molecules are destroyed
over time due to the constant chaotic
movement of water and other molecules
(molecular storm) (Hoffmann 2012). The
difference in  molecular composition
between young and old cells explains their
increased vulnerability to disease.
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Methods for studying aging at
the molecular level

There are technologies that allow us to
study individual molecules and their atomic
composition: mass spectrometry (Slavov
2020), cryo-electron microscopy (Cheng
2018), bioluminescence and other methods
(Singh 2020, Xiao-chen et al. 2015). These
methods will help to uncover the molecular
mechanisms of aging.

Problem of terminology

The term “ageing research” covers too
broad a range of topics, including medicine,
sociology, economics, and care of older
people (Hayflick 2002, 2016). This leads to
confusion in scientific discourse and
funding.

Despite the recognition of aging as a major
risk factor for fatal diseases, its study is
underfunded. A fundamental paradigm shift
is needed so that the scientific community
focuses on the etiology of aging, not just on
treating its consequences.

Centriolar theory of aging of
the organism

This theory is based on the physics of the
format of the process of development and
self-renewal of the organism (Tkemaladze,
2001-20025).

Mechanism: In cells, the processes of
detection and repair of defects are
constantly active, ensuring the maintenance
of cellular integrity. These mechanisms
cover a wide range of cellular components,
including molecules, structures, organelles
and organelles. Moreover, during

asymmetric divisions of human stem cells,
new molecules, structures, organelles,
organelles are selectively segregated into a
valuable stem cell-sibling; old molecules,
structures, organelles, organelles are
selectively segregated into a disposable
cell-sibling that has embarked on the path of
differentiation. However, centrioles are a
notable exception. Unlike other cellular
structures, damaged centrioles are not
subject to repair. Even minor structural
changes in centrioles can lead to serious
consequences for the tissue. Among them
are the exit of the cell from the mitotic cycle,
which leads to cellular senescence, or the
development of tumor transformation due to
uncontrolled division (Bettencourt-Dias &
Glover, 2007; Nigg & Stearns, 2011). It is
easy to imagine what happens over time in
an organism stuffed with non-repairable
centrioles.

Evidence: Research has shown that
centrioles maintain their structure
throughout the cell cycle, but over time they
become damaged. This damage
accumulates with each passing second,
contributing to cell dysfunction and, as a
result, to aging (Piel, Nordberg, Euteneuer,
& Bornens, 2001).

Centriole dysfunction is associated with
chromosomal instability, a hallmark of
cancer. Loss of centriole integrity can lead
to abnormal spindle formation, which
causes aneuploidy  and neoplastic
transformation of cells (Ganem, Godinho, &
Pellman, 2009).

Experimental manipulation of centriole
structure can trigger cellular senescence, a
state of permanent cell cycle arrest,
indicating a key role for centrioles in
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maintaining the cell's ability to proliferate
(Mikule, Pitluk, & Buster, 2007).

Consequences: The failure to repair
centrioles has serious consequences for
tissue homeostasis and aging. Over time,
accumulated centriole damage can lead to:

* Increased cellular aging, which
contributes to tissue degeneration and the
aging process.

* Increased risk of developing cancer
due to chromosomal instability caused by
defective centrioles.

* A decrease in the regenerative
potential of tissues, since cells with
damaged centrioles exit the mitotic cycle.

Many terminally determined cells remove
the centriole, which practically zeroes out
their entropy. Unicellular, plant cells do just
fine without centrioles. But they do not have
true tissues, there is no irreversible
differentiation. Most likely, non-repairable
centrioles, which accumulate entropy and
thus cause aging of the organism, are
needed primarily for complex processes of
irreversible differentiation. Aging of the
organism is the price for irreversible
differentiation.

The biological meaning of preserving old,
non-repairable centrioles is explained by the
Centriolar Theory of Differentiation and the
Hayflick Limit (Tkemaladze, 2005). Aging of
the organism is the result of the
accumulation of old, non-repairable
centrioles  (stochastically = accumulating
defects) by the organism due to the
implementation of differentiation programs
(in the processes of development and then
self-restoration). Permanent rejuvenation is
possible by what no organism is capable of
- replacing old (with defects) non-repairable
centrioles with new ones (without defects).

Until such a technology exists, the organism
should be helped to remove old (defective)
structures and cells.

Practical
recommendations

Intermittent fasting 16:8

Intermittent  fasting (IF) and caloric
restricion (CR) are popular nutritional
strategies aimed at improving metabolic
health, slowing the aging process, and
reducing the risk of chronic diseases. One
of the key mechanisms by which these
strategies exert their beneficial effects on
the body is the activation of autophagy, a
cellular self-cleansing process. However,
long-term adherence to IF and CR requires
careful management of nutritional balance
to avoid micro- and macronutrient
deficiencies. This article reviews the
physiological basis of these dietary
strategies, their impact on autophagy, and
their potential for improving health, as well
as potential risks and ways to minimize
them.

Modern research shows that nutrition has a
significant impact on the aging process and
the development of age-related diseases.
Among the most discussed strategies in this
area are intermittent fasting (16:8 regimen)
and calorie restriction. Both methods are
aimed at reducing the overall caloric content
of the diet and activating adaptive metabolic
processes, in particular, autophagy.
However, long-term adherence to these
regimens requires a balanced approach to
nutritional balance.
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Mechanisms of autophagy
and their regulation by
nutrition

Autophagy is a cellular process of
degradation and recycling of damaged or
excess organelles, proteins, and other
macromolecules. It is activated by stress
caused by nutrient deficiency and helps
maintain cellular homeostasis. The main
regulators of autophagy are:

* mTOR (mammalian target of
rapamycin) is an autophagy inhibitor
activated by amino acids and insulin.

+ AMPK (AMP-activated protein
kinase) is an autophagy activator that
responds to low energy levels in the cell.

« SIRT1 (sirtuin 1) is a protein that
stimulates autophagy under conditions of
calorie restriction.

Intermittent fasting (16:8) and
its effects on autophagy

The 16:8 regimen involves a 16-hour fasting
period followed by an 8-hour feeding
window. This regimen results in decreased
insulin levels and activation of AMPK, which
stimulates autophagy. Animal and human
studies show that IG:

* Improves glucose and lipid
metabolism;

* Reduces levels of inflammatory
markers;

» Helps improve insulin sensitivity;

. Protects neurons from
degenerative processes.
Calorie restriction and its effects on
autophagy
CR involves reducing overall calorie intake
by 20-40% without depriving yourself of
essential nutrients. This results in:

* Decreased mTOR activity and
increased expression of autophagic
proteins;

* Increased resistance to oxidative
stress;

» Improving regenerative processes
and prolonging lifespan in model organisms.
The Importance of Nutritional Balance
Despite the benefits of IG and OC, their
long-term use can lead to protein, vitamin
and mineral deficiencies if the diet is not
balanced. Key recommendations:

* Protein intake (1.2-1.5 g/kg body
weight) to prevent sarcopenia;

* Adequate intake of omega-3 fatty
acids, B vitamins, iron and magnesium;

* Adequate fiber intake to support
gut microbiota.

Intermittent fasting (16:8) and calorie
restriction are powerful tools to activate
autophagy and maintain metabolic health.
However, their use requires nutritional
control to avoid adverse effects. Future
research should focus on individual
differences in response to these dietary
strategies and the development of
personalized nutritional approaches.

» Ethical dilemmas: Life-extending
technologies may deepen social inequality.
For example, stem cell therapy is only
available with a budget of $500,000.

* Demographic risks: Increasing life
expectancy without solving the problems of
pension systems and overpopulation will
lead to economic crises.

Conclusion

From clay tablets with recipes for
immortality to epigenome editing, the path
to understanding aging reflects the evolution
of human thought. Modern science is on the
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brink of a revolution: the combination of Al,

genetic

engineering, and cellular

technologies allows for the first time in
history to specifically influence the basic
mechanisms of aging. However, turning
these achievements into a public good
requires not only scientific breakthroughs,
but also a revision of social paradigms. The
future of gerontology lies at the intersection

of

interdisciplinary

research, ethical

regulation, and global cooperation.
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