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transplantation success. This methodology

also enables modeling of intestinal stem cell
Abstract regeneration. Despite challenges such as
small tissue size and lack of an adaptive
immune system, the protocol offers valuable
insights into innate immunity, aging, and
intercellular interactions, positioning
Drosophila as an ideal preclinical model for
studying tissue regeneration and immune
response.

Drosophila melanogaster serves as a
powerful and versatile model organism for
studying tissue allotransplantation due to its
short life cycle, genetic manipulability, and
significant homology to  mammalian
signaling pathways. This protocol outlines a
procedure for performing tissue transplants
between adult individuals of different ages
and sexes. Key steps include dissection of
the donor’s midgut tissue, microinjection
into the recipient, and tracking engraftment
using sex chromosome differences. The
protocol demonstrates high short-term |ntroduction

survival (over 80%) of host organisms, with

transplanted tissues encapsulated by

hemocytes. Sexual dimorphism affects Drosophila as a Model
transplant outcomes, with females showing
stronger immune responses through the Toll
pathway, resulting in more frequent
rejections, while males exhibit greater tissue
tolerance. Age-related factors, including
reduced regenerative capacity and oxidative
stress in older individuals, impact

Keywords: Allotransplantation, Drosophila
Melanogaster, Sexual Dimorphism,
Pathway, Aging, Signaling.

Animal models, including invertebrates such
as the fruit fly Drosophila melanogaster,
play a pivotal role in enhancing our
understanding of fundamental biological
processes that are intricately linked to
human development and disease, including
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the multifaceted phenomenon of aging. The
experimental advantages of  using
Drosophila are manifold and include an
exceptionally high degree of genomic
homology with humans, the availability of
thousands of genetically modified strains,
and the existence of well-established
methods that facilitate the execution of
complex experiments. In addition, the
relatively low cost of maintenance, the rapid
generation time, and the high fecundity of
these flies collectively render Drosophila an
ideal genetically tractable organism for
conducting genome-level functional studies
with a speed and level of detail that is often
unattainable in vertebrate models (Pandey
& Nichols, 2011).

Genetic Tools for
Allotransplantation

Transgenic Drosophila lines, which make
use of powerful systems such as UAS/GAL4
and CRISPR/Cas9, enable researchers to
label donor tissues with fluorescent markers
(for instance, GFP) so that the integration
and fate of these tissues within the recipient
organism can be meticulously tracked over
time. For example, Garcia-Alcover et al.
(2014) developed an innovative system
designed to study alternative splicing
mechanisms in the context of myotonic
dystrophy, and this system can be readily
adapted for the analysis of transplanted
tissues (Garcia et al., 2014; ). Furthermore,
the CRISPR/Cas9 system is employed not
only for tissue labeling but also for the
precise modification of genes involved in the
immune response, thereby streamlining the
process of modeling allotransplantation
between individuals that are genetically
distinct.

Sex-Based Differences in
Tissue Engraftment

Sexual dimorphism in Drosophila exerts a
significant influence on various cellular
processes, including the proliferation of
stem cells and the innate immune response.
Notably, research conducted by
Alvarez-Abril et al. (2023) has demonstrated
that the sexual identity of intestinal cells
critically determines their response to
transplanted tissues. This is closely
associated with the differential expression of
genes such as LamCa and BTub97EF. In
addition, studies have revealed that female
flies tend to exhibit a more robust immune
response when exposed to foreign tissues,
a response that is mediated by the
enhanced activation of the Toll pathway,
whereas male flies generally show a greater
tolerance towards allogeneic tissues.

Age-Related Effects on
Donors and Recipients

Age-associated changes, which include the
accumulation of mutations in stem cells,
lead to a noticeable decline in the efficacy of
tissue allotransplantation. For instance, it
has been observed that older male
individuals exhibit a significant reduction in
their tissue regenerative capabilities, a
consequence of increased oxidative stress
and the concomitant suppression of critical
signaling pathways such as Hippo and DPP
(Pandey & Jafar-Nejad, 2022) in models of
NGLY1 deficiency. Experiments involving
the transplantation of imaginal discs
between young and aged individuals have
further highlighted that aged specimens
display a diminished activation of these key
signaling cascades.
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Immune Response and
Tolerance

While Drosophila lack an adaptive immune
system, they possess highly sophisticated
innate immune mechanisms that include
signaling pathways such as JNK and Toll.
These pathways are essential for the
recognition and response to allogeneic
transplants. Research by Pan et al. (2023)
has demonstrated that suppression of the
Toll pathway can lead to increased
tolerance towards transplanted tissues.
Moreover, the immune response in these
fies is also modulated by tissue
compatibility factors, which are analogous to
the MHC genes found in mammals.

Practical Applications in
Research

In practical research settings, imaginal discs
are used to study the integration of
transplanted tissues owing to their inherent
regenerative capabilities. For instance,
Thorpe et al. (2024) modeled PIGA-CDG,
effectively demonstrating that the
transplanted tissues recapitulate patient
phenotypes. Additionally, tissues such as
wings and eyes are employed for the
quantitative assessment of growth and
regeneration. Detailed imaging methods,
including scanning electron microscopy
(SEM) and advanced light microscopy, have
been described in the work of
Garcia-Alcover et al. (2014).

Development and Review of
the Allotransplantation
Method

Historically, the pioneering work on
allotransplantation in Drosophila dates back
to the 1920s, when Chambers (1921) first
described a micromanipulator for injections.
Later, Ephrussi and Beadle (1936) adapted
this technology for the transplantation of
organs  between  Drosophila larvae.
Contemporary modifications of this method
now enable the transplantation of tissues
from either larvae or adult flies into adult
hosts (Herranz et al., 2012). The
allotransplantation  procedure itself is
relatively straightforward when all critical
details are rigorously followed. The protocol
comprises several essential steps: the
preparation of an injection system, the
precise labeling of both the implant and the
host, the careful dissection of the donor
tissue, the loading of the tissue into a fine
needle, and finally, the injection into the
host’s body cavity.

Applications, Advantages, and
Limitations

Studying Age-Related Changes:

The transplantation of tissues between
young and old individuals allows
researchers to explore how aging influences
tissue regeneration, the integration of
transplanted grafts, and overall cellular
functionality. For example, it has been noted
that aged Drosophila exhibit a marked
reduction in the activity of signaling
pathways (such as Hippo and DPP), which
adversely affects the successful
engraftment of tissues (Pandey &
Jafar-Nejad, 2022). This method also
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enables the modeling of age-associated
pathologies, including the accumulation of
oxidative stress  and mitochondrial
dysfunction,  through tissue  grafting
experiments (Thorpe et al., 2024).

Analysis of Sexual Dimorphism:

Transplanting tissues between male and
female flies provides valuable insights into
the sex-based differences that govern
immune responses and regenerative
processes. For instance, female Drosophila
demonstrate a significantly higher activation
of the Toll pathway, which leads to more
pronounced rejection of transplants
(Alvarez-Abril et al., 2023). Moreover, the
investigation into the roles of sex-specific
genes (such as LamCa and BTub97EF) in
the integration and survival of donor tissues
has further illuminated these differences
(Mandik et al., 2022).

Immunological Studies:

Although Drosophila lack an adaptive
immune system, their innate immune
responses remain robust and can be
effectively studied in the context of tissue
transplantation. Key innate mechanisms,
including the activation of hemocytes and
the JNK/Toll signaling pathways, have been
implicated in the rejection or acceptance of
allografts (Pan et al., 2023).

Genetic Manipulations:

The use of transgenic lines that express
fluorescent proteins (for  example,
GFP-tagged tissues) facilitates the precise
tracking and monitoring of donor tissue
engraftment within the recipient organism
(Garcia-Alcover et al., 2014).

Advantages

Genetic Controllability:

The availability of advanced genetic
modification techniques, such as
CRISPR/Cas9, enables researchers to
selectively alter gene expression and to
study the roles of specific genes in tissue
engraftment and regeneration (Thorpe et
al.,, 2024). In addition, the extensive
repertoire of transgenic markers (using
systems like UAS/GAL4) allows for
high-resolution visualization of transplanted
tissues.

Short Life Cycle:

Due to the rapid generation time of
Drosophila, it is possible to quickly assess
the long-term effects of  tissue
transplantation. Age-related changes can be
monitored over a span of merely two to
three weeks, which is far more rapid than in
vertebrate systems.

Low Cost and Ethical
Acceptability:

Experiments  utilizing  Drosophila are
generally inexpensive to conduct and do not
involve significant ethical complications.
This makes them highly attractive for
large-scale preclinical research.

Standardization of Conditions:

The ability to control variables such as age,
sex, and genetic background of the
individuals involved minimizes experimental
variability and ensures that the results are
highly reproducible and standardized.
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Limitations

Simplified Immune System:

One of the principal limitations of using
Drosophila is the absence of an adaptive
immune system (i.e., T- and B-cells). This
restricts the study of immune mechanisms
that are of critical importance in mammalian
allotransplantation (Pan et al., 2023).

Physiological Differences with

Vertebrates:

The tissues of Drosophila, such as the
imaginal discs, differ significantly in both
structure and function from those of
humans. Such differences may reduce the
translational applicability of the findings to
clinical settings.

Technical Complexity:

The extremely small size of Drosophila
tissues poses significant  technical
challenges during microsurgical
manipulations. This can complicate the
transplantation procedures and affect the
precision of the experiments (Gong et al.,
2021).

Limited Transferability of Results:

Sexual differences in Drosophila are
regulated by mechanisms that are distinct
from those in mammals (for example, the
absence of a complex hormonal system
akin to that of vertebrates). As a result,
extrapolating these findings to human
allotransplantation models can be
problematic (AIvarez-AbriI et al., 2023).

Absence of Chronic Rejection
Models:

Due to the relatively short lifespan of
Drosophila, it is challenging to study the
long-term effects and chronic rejection
processes that occur in tissue
transplantation, which are critical aspects
when considering translational research to
mammalian systems.

Preparation and
Equipment

The process of dissection and monitoring
necessitates the utilization of a standard
microscope. Needles are meticulously
prepared using a micropuller and
microforge. To ensure sterility, ethanol
treatment and medium filtration are
rigorously implemented. Proper calibration
of instruments and adherence to
standardized procedures are critical to
maintaining experimental accuracy and
reproducibility.

Materials

Reagents:

e Drosophila strains (wild-type strain
and genetically modified lines, if
applicable).

e Chemical reagents (NaCl, KCI,
MgCl2, CaCl2, and appropriate
buffer solutions).

e Nutrient medium for flies (standard
cornmeal-agar medium or
specialized formulations).

e Enzymatic solutions for tissue
dissociation  (e.g., collagenase,
dispase, trypsin, or papain).
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e Fluorescent dyes or antibodies for
cell sorting (if applicable).

Generation of Isogenic Drosophila
Lines

Isogenic lines of Drosophila represent
genetically identical populations engineered
for the specific purpose of investigating the
effects of individual genes or chromosomes
on phenotypic expression. The primary
methodologies employed in their
development encompass selection,
backcrossing, and the utilization of genetic
markers. The following section outlines a
generalized protocol derived from various
sources:

Selection of Parental Lines and
Genetic Markers

e Donor and recipient: Two lines are
carefully chosen—a donor line
carrying the target trait (such as a
mutation) and a recipient line serving
as the genetic background for
integration.

e Genetic markers: Marker genes
(e.g., white for white eyes or
vestigial for underdeveloped wings)
are employed to track chromosomal
transmission.

e Inversions: To mitigate crossover
events in target chromosomes,
inversion-bearing chromosomes
(such as balancer chromosomes)
are utilized.

Backcrossing Scheme
Stages:

e F1 Generation: Cross the donor with
the recipient to generate
first-generation hybrids.

e Backcrossing: Hybrid F1 individuals
are crossed back with the recipient
strain.

e Repetition: The process is reiterated
over 5-7 generations to replace the
recipient’s genetic background by
98-99%.

e Selection of heterozygotes: At each
stage, genetic analysis (such as
phenotypic markers or biochemical
assays) is conducted to isolate
individuals harboring the target
gene.

Utilization of Genetic Tools

e Balancer chromosomes:
Chromosomes containing inversions
(e.g., Muller-5) are instrumental in
preventing recombination, thereby
preserving the integrity of the target
gene.

e Polytene chromosomes: Analysis of
larval chromosomes allows for visual
confirmation of the absence of
crossover events.

Establishment of Homozygous
Lines

e Self-crossing: Upon completion of
backcrossing, self-crossing is
performed over 2-3 generations to
establish homozygous individuals.

e Homozygosity verification: Genetic
testing (such as crosses with marker
lines) or microscopic examination of
polytene chromosomes is
conducted.
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Optimization of Timeframe

e Acceleration of cycles: The short
lifecycle of Drosophila (10-14 days)
enables up to five generations per
year under controlled conditions
(temperature: 25°C, humidity
maintained).

e Early selection: Genotypic analysis
at the embryonic or larval stage
reduces the overall duration of
experiments.

Case Study: Application

In Hirsch’s studies, isogenic lines were
employed to investigate geotaxis. Tester
lines with inversions and dominant markers
(such as Curly for wing morphology) were
used to isolate chromosomes carrying the
desired genes. A similar methodology was
applied in studies examining sexual activity,
where genes on the second chromosome
and sex chromosomes played a pivotal role.

Key Requirements for Protocol
Success

e Sterility: Essential for preventing
unintended crossings.

e Environmental control: A stable
temperature of 25°C and regulated
humidity for synchronized
development.

e Documentation: Detailed records of
generational progress, markers, and
experimental outcomes.

Equipment

Microscopes, micropuller, microforge,
needles, syringes, filters, and additional
specialized tools.

Procedures

Adult Donors
(96 Hours — 60 Days)

Dissection of the Midgut

e Estimated time: ~30 min
Preparation:

e Anesthetize adult flies (3—5 days old)
and operate under a dissecting
microscope. Dissection:

e Perform the dissection in chilled
PBS. Carefully isolate the entire
midgut (the section between the
crop and hindgut), ensuring the
exclusion of fat tissue and other
contaminants.

Tissue Dissociation

Enzymatic Digestion:

e Transfer dissected midguts into a
microcentrifuge  tube  containing
digestion  solution (e.g., PBS
supplemented with 2% FBS and
collagenase/dispase at an optimized
concentration).

Incubation:

e Incubate at 25°C for 20-30 minutes
with gentle agitation to facilitate
tissue breakdown into single-cell
suspensions.

Mechanical Dissociation:

e Gently pipette the cell suspension to
further disaggregate the cells.
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Filtration and Washing

e Filtration: Pass the cell suspension
through a 40 ym filter to eliminate
tissue debris and cell aggregates.

e Centrifugation: Spin the filtered
suspension at ~300xg for 5 minutes
at4°C.

e Resuspension: Carefully resuspend
the pellet in FACS buffer (PBS with
2% FBS and 1 mM EDTA) to prevent
cell aggregation.

Fluorescence-Activated Cell
Sorting (FACS)

Labeling (if necessary):

e If no transgenic reporter is utilized,
perform immunostaining with
antibodies targeting ISC markers
(e.g., Delta for ISC identification).

Sorting:

e Configure cytometer settings based
on forward and side scatter
parameters to isolate viable single
cells. If utilizing the esg-Gal4 >
UAS-GFP system, sort GFP-positive
cells to enrich for ISCs and early
progenitors.

Collection:

e Gather sorted cells into tubes
containing FACS buffer or an
appropriate medium for downstream
applications.

Subsequent Applications
RNA Extraction/Culture:

e |solated ISCs can be employed for
RNA extraction, transcriptomic
analysis, in vitro culture, or other
molecular assays.

Notes

Optimization:

e Adjust enzyme type, concentration,
and incubation time based on cell
yield and quality.

Purity Verification:

e Post-sorting analysis of a fraction of
cells ensures the purity of the ISC
population.

References:

e For detailed protocols, refer to
publications such as Dutta et al.
(2015) and associated JoVE and
elLife videos.

Troubleshooting

To ensure a smooth transplantation
process, carefully secure the host's
terminalia using fine forceps. While
maintaining a steady grip, gently press the
tip of the needle holding the donor tissue
against the ventral cuticle of the host. The
optimal injection site is typically located
between the fourth and sixth sternites. Due
to the needle’s sharpness, it will effortlessly
penetrate the cuticle with minimal
resistance. Once the puncture is made,
slightly retract the needle to alleviate
internal pressure and carefully introduce the
transplant into the abdominal cavity with
controlled motion.

A Critical Step: Avoid unnecessary needle
movement after penetration, as excessive
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motion can cause additional mechanical
damage to the internal structures of the
host.

Once the transplant is securely placed,
withdraw the needle with precision to
minimize trauma. Following injection, keep
the host flies under CO. anesthesia for
approximately one minute before allowing
them to recover for an additional minute in a
CO:-free environment. At this stage, host
individuals should exhibit no visible damage
to the sternites, nor should there be any
leakage of hemolymph from the injection
site.

To maintain sterility, immediately rinse the
needle with PBS1X to remove any residual
biological material and prevent
cross-contamination.

After transplantation, transfer the flies into
fresh vials containing nutrient media. To
facilitate recovery, ensure that vials are kept
in a horizontal position, preventing
unnecessary stress or additional fluid
leakage from the host.

A Critical Step: As the abdominal muscles
regain motility, slight fluid leakage may
occur. If observed, gently absorb excess
liquid with sterile tissue paper to prevent
complications.

Cultivation of Allotransplanted
Hosts

To maximize survival rates and ensure
optimal conditions for transplanted tissues,
follow a precise maintenance regimen.
Transfer the flies to fresh vials daily for the
first three days post-transplantation. After
this critical period, subsequent transfers

should occur biweekly to maintain optimal
conditions for host survival.

A Critical Step: The initial
post-transplantation period is crucial, as it
determines the long-term viability of the
host. Close monitoring during the first few
days is imperative.

Throughout the experiment, observe the
hosts for any signs of terminal conditions,
such as impaired movement or distress,
which may indicate transplant rejection or
systemic physiological failure.

Isolation of Transplants from Hosts:

e Estimated time: ~5—10 minutes per fly
To extract transplanted tissues for analysis,
anesthetize the flies and carefully separate
the abdomen from the rest of the body.
Transfer the excised abdominal section into
a PBS1X solution for further processing.

Using precise dissection techniques,
carefully open the abdomen and gently
extract the encapsulated transplant using
fine forceps. If the transplantation procedure
was performed between individuals of
different sexes, assess the proportion of
host and donor cells based on X
chromosome counts.

For downstream applications such as
genetic, histological, or molecular analyses,
freeze the extracted samples immediately to
preserve cellular integrity.

Expected Results

Based on the described protocol and
previous research findings, the following
outcomes are anticipated:
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Host and Transplant Survival

High short-term survival rates of host flies:

If sterile conditions and precise procedural
execution are maintained, the survival rate
of recipient flies is expected to exceed 80%
within the first 3-5 days
post-transplantation.

Encapsulation of the transplant:

Following transplantation, host hemocytes
gradually encapsulate the transplanted
tissue, forming a compact structure without
excessive overgrowth beyond physiological
limits.

Influence of Donor and
Recipient Age

Diminished regenerative potential in aged
donors:

Transplants derived from older donors are
expected to exhibit:

e Reduced activation of key signaling
pathways, including Hippo and DPP
(Decapentaplegic).

e Increased accumulation of oxidative
stress markers within cells.

Age-related differences in tissue integration:

Transplants introduced into young recipients
are anticipated to integrate more efficiently
due to the preserved activity of stem cell
populations within the host.

Sexual Dimorphism

Enhanced immune response in female
hosts:

Transplants within female Drosophila are
more likely to be rejected due to heightened
activation of the Toll signaling pathway and
increased expression of immune response
genes (LamCa, BTub97EF).

Differences in regenerative capacity:

Male hosts may exhibit a higher survival
rate of intestinal transplants, potentially
linked to lower phagocytic activity compared
to female counterparts.

Genetic and Immunological
Considerations

Role of genetic markers:

GFP/YFP-labeled  tissues  will  allow
visualization of transplant integration within
the recipient’s body over a period of 7-14
days.

Suppression of innate immunity:

Mutations in Toll/lJNK pathway genes or the
application of immunosuppressive
techniques will enhance tolerance to
allogeneic transplants, increasing their
persistence in the host.

Practical Applications

Modeling age-related pathologies:

Tissue  transplantation  from  mutant
Drosophila strains (e.g., NGLY1-deficient)
can replicate phenotypes resembling human
diseases, such as protein aggregation
disorders.

Regeneration studies:
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Imaginal discs and midgut stem cells (ISCs)
will demonstrate their proliferation and
differentiation potential within the host
environment,  providing insights into
regenerative processes.

Limitations and Artifacts

Technical challenges:

e High variability due to the miniature
size of tissues, increasing the risk of
damage during dissection.

e Spontaneous gene deletions (e.g.,
Igl) may introduce confounding
effects.

Short observation window:

The limited lifespan of Drosophila (up to 60
days) constrains the study of chronic
rejection mechanisms over extended
periods.

Recommendations for Data
Interpretation

Control of genetic background:

Utilizing isogenic lines is recommended to
minimize experimental variability. Early
monitoring:

Fluorescent marker expression (e.g., GFP)
should be analyzed between days 3 and 7
post-transplantation to track tissue
integration dynamics.

Consideration of sex and age variables:

Experimental data should be stratified
based on sex and age groups to ensure
accurate statistical comparisons and
interpretations.

These anticipated results contribute to a
deeper understanding of aging
mechanisms, immune responses, and
tissue regeneration using the Drosophila
melanogaster model. For further validation,
histological analysis and RNA sequencing
(RNA-seq) of transplanted tissues are
recommended.
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