

Twin Paradox Without Paradox

Ze interpretation

Jaba Tkemaladze ¹

Affiliation: ¹ Kutaisi International University, Georgia

Citation: Tkemaladze, J. (2026). Twin Paradox Without Paradox. Longevity Horizon, 2(4). DOI :

<https://doi.org/10.65649/7ytpx088>

Abstract

The twin paradox is generally regarded as a consequence of the geometry of Minkowski spacetime: the traveling twin follows a shorter worldline and therefore accumulates less proper time. While mathematically consistent, this explanation leaves a conceptual gap—it stipulates that clocks measure the metric interval without specifying why such a relation holds. The Ze interpretation closes this gap by reconstructing proper time from purely operational primitives. Time is defined not as a geometric coordinate but as a local count: $\tau = \alpha * N$, where N is the number of causally connected coincidence events registered by a stable counter and α is a conventional normalization coefficient. Motion redistributes a finite event budget between two orthogonal channels: temporal self-correlation (aging) and spatial cross-correlation (displacement). The total event count satisfies $dN_{\text{total}}^2 = dN_{\text{temporal}}^2 + dN_{\text{spatial}}^2$, from which the Lorentz factor $\gamma = dN_{\text{total}} / dN_{\text{temporal}}$ and the Minkowski interval $ds^2 = dt^2 - dx^2/c^2$ emerge as derived continuum approximations. Velocity is redefined as the event allocation ratio $v/c = dN_{\text{spatial}} / dN_{\text{total}}$. Within this framework, the twin scenario reduces to a comparison of two distinct causal chains sharing common endpoints. The traveling twin's chain contains the same number of temporal self-correlations interspersed with additional spatial correlation events required by motion; these spatial events consume event budget without contributing to causal distance. Upon reunion, the counter comparison yields $N_T < N_E$ directly and without paradox. The asymmetry is not a puzzle requiring reconciliation with a symmetric description—it is the empirical fact from which theorizing begins. The Ze interpretation is empirically equivalent to special relativity but provides a constructive mechanism for time dilation, eliminates the clock hypothesis as an independent postulate, aligns time ontology with metrological practice, and dissolves the twin paradox by reducing it to trivial arithmetic. The paradox vanishes not because it is resolved but because it was never there.

Keywords: Special Relativity; Twin Paradox; Proper Time; Operational Definition; Causal Sets; Discrete Physics; Relational Time.

The Ze Interpretation: Physical Postulates and the Operational Definition of Time

The enduring conceptual difficulty of the twin paradox stems not from a failure of special relativity, but from a lingering commitment to a Newtonian picture of time as a universal, background parameter. Even within the formalism of Minkowski space, the phrase "time dilation" implies a process of stretching or slowing relative to an absolute measure. To resolve the paradox without circular reasoning, we require a framework in which time is not the arena in which events happen, but a quantity derived from events. The Ze interpretation, proposed here, provides such a framework. It is not a modification of relativistic physics, but a reconstruction of its ontological commitments based solely on countable, local correlations.

Ze is physically real

The fundamental postulate of the Ze interpretation is that the universe is not composed of worldlines embedded in a pre-existing spacetime manifold. Instead, it is composed of discrete, primitive events e_i . These events are not "points" in a continuum; they are the only primitive existents. Between these events, there exist streams. A stream is a causal chain of events with no intrinsic metric properties. It is neither a trajectory through space nor a timeline; it is simply an ordered sequence of actualizations.

In this view, what an observer refers to as a "clock" is a specific type of local, repeating stream of events. A clock does not measure a dimension; it counts correlations. Specifically, a clock is a counter C that increments by one integer ($C \rightarrow C + 1$) upon the occurrence of a specific, stable, local coincidence. This coincidence could be the alignment of a hand on a dial, the arrival of a light pulse at a detector, or the decay of an atom. Critically, there is no "flow" of time external to this counting.

This position commits us to a radical operationalism: the clock is not a proxy for time; it is the sole ontological ground for time. If no physical system undergoes a local coincidence event, no time passes. This aligns with the view later articulated by Rovelli (1996), who argued that time is entirely a function of correlations between physical variables. Ze extends this relationalism by asserting that these correlations are not merely measurements of time—they constitute time itself.

The axiomatic definition of duration

If there is no background metric, how do we define the interval between two events e_a and e_b for a given observer? In standard relativity, this interval is a geometric property of the manifold. In Ze, it is purely operational. The duration experienced by an observer between e_a and e_b is strictly defined as the net change in that observer's counter:

$$\Delta \tau = C(e_b) - C(e_a) = \Delta C$$

This definition renders time discrete and countably additive. It eliminates the distinction between coordinate time and proper time. There is only proper count. The rate at which a clock ticks is not a derivative ($dt/d\tau$); it is a frequency of coincidence detection. If a clock counts 100 ticks during a given physical process, that is the duration of the process for that clock.

This definition resolves a long-standing ambiguity in the foundations of relativity. In the standard formulation, proper time is defined as the integral of the metric along a worldline. This presupposes the existence of the metric and the worldline. In Ze, the worldline is an abstraction drawn after the fact; the only reality is the sequence of ticks. The metric, if it is to be recovered at all, must be derived from the statistical regularities observed across many streams. This reverses the explanatory priority of general relativity: geometry is no longer the cause of clock behavior, but an approximation of aggregated clock counts.

A similar methodological commitment appears in the work of Fong et al. (2016), who demonstrated that temporal order in relativistic quantum mechanics can be derived from the statistical correlations of detector clicks without invoking a background time parameter. Ze adopts this detector-click ontology as fundamental and extends it to the classical regime.

The nature of frequency and motion

A common objection to discrete interpretations of time is the problem of defining velocity. If both space and time are discrete, how do we define smooth motion? The Ze interpretation resolves this through the concept of the correlation rate.

Consider two co-located streams: a clock stream C and a spatial-translation stream M. The observer does not measure time to see how far they have moved. Instead, they measure the rate of coincidences between the spatial stream and the clock stream. If a light signal is emitted and reflected back, the observer does not calculate $\Delta t = 2L/c$. Instead, they observe a specific number of clock increments ΔC occurring between the emission event and the reception event.

The speed of light c ceases to be a velocity in meters per second and becomes a conversion ratio between two distinct types of event streams: spatial coincidence streams and temporal coincidence streams. This is not merely a semantic shift. In standard physics, c is a property of the vacuum. In Ze, c is a property of the correlation between streams. It answers the question: for every one spatial coincidence event (e.g., a photon interacting with a detector), how many clock coincidence events occur locally?

Motion, therefore, is not translation through a void over time. Motion is the frequency of spatial coincidences relative to clock coincidences. A faster-moving clock is not one that ticks slower. Rather, a moving object is one whose spatial coincidence events are sparse relative to its internal coincidence events. The Lorentz factor γ is reinterpreted as a ratio of two distinct count rates.

This relational interpretation of motion finds support in the thermal time hypothesis of Rovelli (1996), where time emerges from statistical mechanics without a preferred background. Ze

applies this logic to the single-observer scale: time is the number of correlations between a system and its internal reference stream.

The relativity of simultaneity as count variance

The relativity of simultaneity is often visualized as the tilting of spatial axes in a Minkowski diagram. In the Ze interpretation, this geometric tilting is reinterpreted as counter misalignment.

If two observers, Alice and Bob, are in relative motion, they are sampling different streams of coincidence events. When Alice declares two distant events to be simultaneous, she is asserting that the counters on two separate clocks located at those events incremented at the same local step number. However, because the synchronization signal requires a finite number of spatial coincidences (i.e., a finite travel time for light), Bob necessarily disagrees.

His disagreement is not a trick of perception; it is the physical consequence of the fact that the two events correlate with different counter values in his own local stream. There is no fact of the matter about which observer is correct. Simultaneity is not a relation between events in the world; it is a relation between events and a specific counter. Change the counter, change the simultaneity relation.

This resolves the apparent paradox of reciprocal time dilation. In the standard account, each twin claims the other's clock is running slow, yet upon reunion one twin has aged less. This appears contradictory if one believes that time is a background quantity that clocks measure imperfectly. In Ze, there is no background quantity. Each twin's clock simply counts its own coincidences. The asymmetry is not in the rate of time flow, but in the total number of locally correlated events accumulated along each stream.

Why there is no clock hypothesis problem

A frequent critique of operational definitions of time is the so-called clock hypothesis—the assumption that acceleration does not affect the rate of an ideal clock. In the Ze interpretation, this hypothesis is not an assumption; it is a definition.

A clock is defined as a counter that increments strictly based on local coincidences. If acceleration were to alter the physical mechanism such that it counted coincidences at a different rate (e.g., due to stress on a crystal oscillator), that device would not be a clock in the Ze sense. It would be a faulty accelerometer. The ideal clock of special relativity is simply a stream of events that is immune to mechanical stress.

The traveling twin's biological processes constitute such a stream. Aging is not a process that occurs in time; aging is the accumulation of cellular coincidences: heartbeats, metabolic cycles, neural firings. The acceleration experienced at the turnaround point is not a cause of the age difference; it is merely the event that changes the trajectory of the traveler's stream through the family of Earth-bound coincidence streams. This altered trajectory results in a lower total correlation count upon reunion.

The asymmetry of the twin paradox is therefore not a mystery requiring resolution via general relativity or a preferred frame. It is a direct consequence of the fact that the two twins have different total counts. The stay-at-home twin's clock simply had more opportunities to coincide with itself. There is no paradox when time is understood as number rather than dimension.

The eliminability of spacetime

The Ze interpretation suggests a radical ontological conclusion: spacetime is not the fundamental arena of physics. The manifold of special relativity is a useful calculational device, but it does not represent the deep structure of reality. What exists are events, streams, and counters. The metric tensor, if it is to be retained, must be reconstructed as a statistical summary of correlations across many streams.

This aligns with the broader program of relational physics advocated by Barbour (1999), who argued that time is an illusion generated by the changing configurations of the universe. Ze differs from Barbour in that it does not eliminate time; it identifies time with a specific countable quantity. Time exists, but only as the ticks of clocks. There is no time of the universe, only times of individual streams.

This eliminativism regarding spacetime has profound implications for the twin paradox. If spacetime is not fundamental, then the length of the worldline is not the cause of the age difference. The age difference is the primitive fact; the worldline length is a derived quantity we assign post hoc to make the geometry consistent. The paradox disappears because the explanatory arrow is reversed: clocks do not read time because they travel through spacetime; we construct spacetime to account for why clocks read different numbers.

By establishing time as a discrete count rather than a geometric coordinate, the Ze interpretation removes the metaphysical veil from the twin paradox. The difference in ages is no longer a mysterious effect of path geometry; it is an arithmetic difference in ledger entries. This leads us to the specific resolution of the paradox in the following section.

Proper Time in Ze: Counts, Not Intervals

The operational definition of proper time constitutes the central methodological innovation of the Ze interpretation. While special relativity treats proper time as the integral of the spacetime metric along a worldline, this approach presupposes the very geometric structures that a foundational interpretation ought to derive. The Ze interpretation inverts this relationship: proper time is not inferred from geometry; geometry, insofar as it is empirically accessible, is inferred from accumulated proper times. This section establishes the formal definition of proper time in Ze and examines its conceptual and empirical consequences.

The count postulate

For any observer or physical system A possessing a stable local clock mechanism, we define proper time strictly as a linear function of counted events:

$$\tau_A = \alpha * N_A$$

where N_A is the total number of causally connected, locally registered coincidence events accumulated by the system's clock counter, and α is a normalization coefficient that converts counts into standard temporal units such as seconds.

This definition carries four distinct commitments. First, proper time is discrete. It increases by increments of α and cannot take arbitrary real values. Second, proper time is additive. The time assigned to a composite sequence of events is exactly the sum of the times assigned to its disjoint sub-sequences. Third, proper time is observer-relative in a strong sense: there is no time of the system independent of the system's own counting. Fourth, proper time is physically real. It is not an approximation of a continuous underlying quantity; the count exhausts the temporal reality of the system.

The normalization coefficient α requires calibration against an agreed standard. In practice, this is achieved by designating a specific physical process—such as 9,192,631,770 cycles of the cesium-133 hyperfine transition—as defining $N = 9,192,631,770$ counts, and setting α such that $\tau = 1$ second. This is not a departure from standard metrology; it is an explicit recognition that the second is defined by a count, not by a pre-existing temporal interval. The International System of Units (SI) has, since 1967, defined the second in precisely this operational manner (BIPM, 2019). Ze merely takes this definition seriously as an ontological statement rather than a mere measurement convention.

Distinction from the geometric definition

In standard relativistic physics, proper time is defined as:

$$d\tau^2 = -g_{\mu\nu} dx^\mu dx^\nu$$

or, in the flat Minkowski metric:

$$d\tau^2 = dt^2 - (dx^2 + dy^2 + dz^2)/c^2$$

This definition is geometric. It presupposes a manifold, a metric tensor, and a differentiable path through the manifold. Proper time is then computed by integrating the metric along this path. The clock is assumed to measure this pre-existing geometric quantity.

Ze reverses this order. The count N_A is the primitive fact. The metric, if it is to be introduced at all, must be reconstructed from the statistical regularities observed across many counters. As Brown (2005) has emphasized, the clock hypothesis in special relativity—the assumption that ideal clocks measure the metric interval—is just that: a hypothesis, not a logical necessity. Ze replaces this hypothesis with a definition. Clocks do not measure proper time; they constitute it.

This move finds strong support in the literature on relational physics. Rovelli (1996) explicitly argues that time should be defined as the reading of a clock, not as a background parameter. Similarly, the detector-based approach of Fong et al. (2016) demonstrates that temporal

ordering can be derived from click counts without presupposing a time coordinate. Ze extends this detector ontology from the quantum to the classical domain and from order to magnitude.

The problem of the null interval

A significant conceptual advantage of the Ze definition concerns the treatment of lightlike intervals. In special relativity, the proper time elapsed along a lightlike worldline is zero. This is mathematically coherent within the geometric framework: if $ds^2 = 0$, the integral vanishes. However, it generates persistent interpretive difficulties. Does light experience no time? Does a photon have a perspective from which its entire journey is instantaneous? These questions have generated substantial confusion in both pedagogical and philosophical contexts.

In Ze, the question does not arise. A photon does not possess a clock. It has no internal mechanism for generating causally connected coincidence events. Therefore, N_{photon} is undefined, and no proper time can be assigned. The null interval of special relativity is reinterpreted not as zero time experienced, but as the absence of any counter capable of registering time. This aligns with the physical fact that photons do not age, do not decay, and cannot carry records of their history. The Ze definition thus eliminates the misleading anthropomorphism of the photon's-eye view while remaining empirically equivalent to standard relativity.

Calibration and conventionality

The choice of alpha is conventional, but its necessity is not. Any empirical science of time requires a unit. By making the conventionality of the unit explicit, Ze reveals that the only non-conventional temporal fact about a system is the raw count N_A . All temporal comparisons between systems ultimately reduce to comparisons of counts.

This has direct implications for the twin paradox. When the twins reunite, the traveling twin reports a count N_{travel} and the stay-at-home twin reports a count N_{home} . The empirically accessible fact is that N_{travel} is less than N_{home} . The statement that the traveling twin is younger is equivalent to the statement that her clock registered fewer coincidence events. No further explanation in terms of metric geometry is required, although such geometric descriptions remain available as convenient calculational tools.

This position echoes the conventionalist stance of Reichenbach (1958), who argued that the geometry of spacetime is underdetermined by empirical data and requires coordinating definitions. Ze extends this conventionalism from geometry to the topology of time itself. The temporal order is given by the sequence of counts; the metric duration is fixed by convention.

The arrow of time as count asymmetry

The Ze definition of proper time also offers a natural account of the thermodynamic arrow of time. In standard physics, the arrow of time is a puzzle because the fundamental dynamical

laws are time-symmetric, yet macroscopic processes are irreversible. Various resolutions have been proposed, typically invoking initial conditions or statistical considerations.

In Ze, the arrow of time is built into the definition of proper time. The counter N_A monotonically increases. It cannot decrease. This is not a dynamical law; it is a criterion for what counts as a clock. A device that sometimes counts backward is not a clock but a defective instrument. Therefore, the direction of time is not an emergent property of statistical mechanics but a precondition for temporal discourse itself.

This aligns with the approach of Barbour (1999), who argues that time is an illusion generated by the increasing complexity of global configurations. Ze differs in retaining time as real, but agrees that the directedness of time is primitive rather than derived. The twin paradox thus involves not only a difference in total counts but a difference in the total accumulation of directed, irreversible physical processes.

Empirical access and the verifiability condition

A final advantage of the Ze definition concerns empirical verifiability. The proper time of a system is directly readable from its clock. No inference is required. By contrast, the geometric proper time of special relativity is not directly observable; it is inferred from clock readings under the auxiliary hypothesis that clocks accurately measure the metric.

This may appear to be a distinction without a difference. If clocks always measure the metric, why treat the reading and the metric interval as distinct? The response is that the identity of clock reading and metric interval is an empirical discovery, not an a priori truth. It is logically possible that clocks measure something else, or that different types of clocks yield discordant results under certain conditions. Indeed, the gravitational redshift experiments originally motivated by general relativity were required precisely to verify that clocks at different gravitational potentials do not remain synchronized.

By treating the clock reading as the definition of proper time, Ze immunizes itself against such verification problems. If an atomic clock and a biological clock yield different counts over the same interval of coordinate time, the question is not which clock measured the true proper time; the question is which physical process counted more coincidence events. The answer is given directly by the instruments. No further fact about the true geometry of spacetime is needed to settle the matter.

This operationalist stance is characteristic of the positivist tradition in early twentieth-century physics, particularly the operationalism of Bridgman (1927). However, Ze is not merely a revival of positivism. It does not claim that unobservable entities do not exist; it claims that time, specifically, is exhausted by its observability conditions. This selective operationalism is motivated not by general epistemological scruples but by the specific success of count-based definitions in fundamental metrology.

Summary

Proper time in Ze is defined as alpha times the number of locally correlated coincidence events registered by a stable counter. This definition is discrete, additive, observer-relative, and operationally transparent. It eliminates the conceptual puzzles associated with null intervals, provides a natural account of the arrow of time, and aligns with established metrological practice. Most importantly for the twin paradox, it reduces the problem of differential aging to a simple comparison of ledger entries. The traveling twin is younger because her clock counted fewer ticks. The task of the following section is to demonstrate that the magnitude of this count difference exactly matches the predictions of special relativity, thereby establishing the empirical adequacy of the Ze interpretation.

The Two Twins in Ze: Count Discrepancy Without Paradox

The twin paradox achieves its paradoxical force through an implicit appeal to a global, background conception of time. If time is universal, the asymmetric aging of the twins appears contradictory. If time is merely a coordinate, the asymmetry appears mysterious. The Ze interpretation dissolves this tension entirely by reconstructing the scenario using only the primitive elements introduced in the preceding sections: discrete events, streams, and local counters. No global reference frame is admitted. No metric is presupposed. The only empirically accessible quantities are the final counter readings of the two twins upon reunion. This section demonstrates that these readings necessarily diverge, that the magnitude of divergence matches the standard relativistic prediction, and that no paradox remains to be resolved.

The scenario without spacetime

Consider two systems, designated Twin E (Earth-bound) and Twin T (traveler). Each system possesses a local, stable clock mechanism that increments a counter upon each causally connected coincidence event. Twin E remains within a stream of events characterized by minimal external perturbations. Twin T departs, undergoes a period of relative motion, reverses direction, and returns to coincidence with Twin E.

In the standard geometric account, this scenario is represented as two worldlines in Minkowski spacetime sharing common endpoints. The proper time elapsed for each twin is computed by integrating the metric along their respective paths. The asymmetric outcome is attributed to the different lengths of these worldlines.

In Ze, this geometric representation is rejected as derivative. There are no worldlines; there are only streams of coincidence events. There is no spacetime manifold; there are only local correlations between streams. The reunion event is not the intersection of worldlines; it is the re-establishment of local coincidence between two counters that have been counting independently. The empirical fact upon reunion is simply that counter T displays a lower total than counter E:

$N_T < N_E$

This inequality is not a consequence of any deeper geometric fact. It is the primitive datum from which any geometric reconstruction must begin. The task of a physical theory is not to explain why N_T is less than N_E in terms of spacetime structure, but to predict the magnitude of the difference given the sequence of local coincidences experienced by each twin.

The stream geometry of the traveling twin

Twin T's journey consists of three distinct phases: outbound, turnaround, and inbound. During the outbound and inbound phases, T is in a state of relative motion with respect to the laboratory frame. In the standard account, this motion results in time dilation: T's clock runs slow relative to E's clock. In Ze, no clock runs slow. Each clock runs at its own rate, defined by its own frequency of local coincidences.

The relevant question is: why does T's clock count fewer coincidences during a given sequence of spatial coincidence events? The answer lies in the correlation rate between T's clock stream and T's spatial translation stream. For a system in motion, the frequency of spatial coincidences (interactions with detectors, passage of milestones, reflection of light signals) is reduced relative to the frequency of internal clock coincidences. This is not an effect of time dilation; it is the definition of motion itself.

This relational conception of motion finds precise expression in the relativistic Doppler factor. As Bondi (1962) demonstrated in his k-calculus approach, the entire content of special relativity can be derived from the radar method and the constant speed of light, without invoking the Lorentz transformation or the metric tensor. The k-factor directly relates the rate of clock ticks emitted by one observer to the rate received by another. In Ze, this k-factor is not a consequence of time dilation; it is the observable ratio of two count rates. Twin E emits signals at regular intervals defined by E's local counter. Twin T receives these signals at a different rate defined by T's local counter. The ratio of these rates is determined solely by their relative velocity.

Counting the signals

The simplest derivation of the count difference in Ze follows Bondi's method but interprets it ontologically. Let Twin E emit one signal pulse per each local clock tick. These signals propagate at the invariant speed c , which in Ze is reinterpreted as the conversion ratio between spatial coincidence events and clock coincidence events. Twin T receives these signals throughout the journey. Upon reunion, the total number of signals received by T is compared to the total number emitted by E.

During the outbound phase, T recedes from E. Each subsequent signal must traverse an increasing spatial interval, resulting in a reduced reception rate. The ratio of received ticks to emitted ticks is given by:

$$f_{\text{received}} / f_{\text{emitted}} = \sqrt{(1 - \beta) / (1 + \beta)}$$

where $\beta = v/c$. During the inbound phase, T approaches E , and the reception rate is correspondingly increased:

$$f_{\text{received}} / f_{\text{emitted}} = \sqrt{(1 + \beta)/(1 - \beta)}$$

If the outbound and inbound phases are symmetric in duration as measured by E 's counter, the number of signals emitted during each phase is equal. Let this number be $N_E/2$. The total signals received by T is then:

$$N_T = (N_E/2) * \sqrt{(1 - \beta)/(1 + \beta)} + (N_E/2) * \sqrt{(1 + \beta)/(1 - \beta)}$$

Simplifying:

$$N_T = N_E / \sqrt{1 - \beta^2}$$

Therefore:

$$N_T = N_E * \sqrt{1 - \beta^2}$$

This is precisely the standard time dilation factor. T 's counter records fewer ticks than E 's counter by the Lorentz factor γ . No metric, no spacetime diagram, and no global coordinate system has been invoked. The derivation relies solely on the constant speed of light, the regularity of the emission process, and the counting of received signals.

The asymmetry of counting

A persistent objection to the twin paradox is the apparent symmetry of the situation. If motion is relative, why does the asymmetry favor the stay-at-home twin? In Ze, this objection dissolves because the twins are not symmetric with respect to the signal exchange process.

Twin E remains within a single inertial stream throughout the experiment. Twin T does not. At the turnaround point, T experiences a physical process—acceleration—that changes the correlation structure of T 's streams. This acceleration is not the cause of the age difference, but it is the event that breaks the symmetry of the counting procedure. Prior to turnaround, T was receding from E and receiving signals at a reduced rate. After turnaround, T is approaching E and receiving signals at an increased rate. T has direct, local experience of this transition. E does not.

This asymmetry is not a violation of relativity; it is a consequence of the fact that the two twins have different sequences of local coincidences. As Einstein himself emphasized in his original 1905 paper, the clock that undergoes acceleration records less elapsed time (Einstein, 1905). The Ze interpretation merely makes explicit what the geometric account leaves implicit: the asymmetry is not in the geometry of spacetime but in the history of local interactions.

Grünbaum (1973) offered a detailed philosophical analysis of this asymmetry, concluding that the clock hypothesis and the conventionality of simultaneity render the twin paradox entirely consistent with relativity. Ze goes further: it eliminates the need for a clock hypothesis

altogether. The asymmetry is not an inference from the geometry; it is directly read from the counters.

The turnaround and the missing counts

A common question in pedagogical discussions concerns the sudden jump in the perceived age of the stay-at-home twin during the turnaround. In the standard spacetime diagram, the traveling twin's plane of simultaneity rotates abruptly, causing the Earth twin's age to increase discontinuously. Critics have sometimes alleged that this discontinuity reveals an inconsistency in special relativity.

In Ze, there is no simultaneity plane and therefore no discontinuity. T does not perceive E aging rapidly during the turnaround. Rather, T receives a burst of signals that have been in transit during the outbound phase. Upon acceleration, T's motion relative to the incoming signals changes, and the rate of reception increases. This increased rate compresses a large number of signals into a short period of T's proper time. The total count of received signals is conserved; there is no discontinuity in the information received, only a discontinuity in the rate of reception.

This resolution has been clearly articulated by Mermin (2005), who emphasizes that the so-called time jump is an artifact of the simultaneity convention, not a physical effect. Ze eliminates the simultaneity convention entirely. T does not ask what time it is now on Earth; T merely counts the signals arriving. The count of signals received plus the count of signals yet to be received always equals the total emitted. No paradox arises.

Empirical adequacy and predictive equivalence

The Ze derivation of the count discrepancy yields the same quantitative prediction as special relativity. This is essential for empirical adequacy. If Ze predicted a different age difference than the Lorentz factor, it would be falsified by existing experimental evidence. The Hafele-Keating experiment (Hafele & Keating, 1972), the GPS system, and numerous particle physics experiments have confirmed the relativistic prediction to high precision.

Ze is not offered as an empirically distinct theory but as a conceptually distinct interpretation. It accepts all empirical predictions of special relativity while rejecting its geometric ontology. This places Ze within the tradition of constructive relativity, as opposed to principle relativity. Einstein distinguished between constructive theories, which explain phenomena in terms of simple hypothetical mechanisms, and principle theories, which provide formal constraints without specifying underlying mechanisms. Special relativity, as originally formulated, is a principle theory. Ze is an attempt to provide a constructive counterpart: time dilation is not a geometric necessity but a consequence of counting correlations between streams.

This constructive project finds precedent in the work of Bell (1976), who famously proposed a Lorentzian interpretation of relativity in which time dilation is explained by physical interactions with a dynamical vacuum. Ze differs from Bell in rejecting the ether and in treating the

discreteness of time as fundamental rather than emergent. Both approaches share the goal of rendering relativistic phenomena intelligible rather than merely mathematically consistent.

Summary

The twin scenario in Ze reduces to a counting problem. Twin E emits signals at a fixed rate defined by E's local clock. Twin T receives these signals at rates determined by their relative motion. Upon reunion, the total signals received by T is less than the total emitted by E by the Lorentz factor. T's counter registers fewer ticks than E's counter. The asymmetry is not a paradox requiring reconciliation with a symmetric description; it is the direct empirical outcome of an asymmetric sequence of local coincidences. The traveling twin is younger because she counted fewer causally connected events. No further explanation is necessary.

What Motion Is in Ze: Redistribution of Correlations

The kinematic structure of special relativity emerges, in the Ze interpretation, not from the geometry of spacetime but from the arithmetic of counting. The Lorentz transformation, the Minkowski metric, and the invariance of the interval are not primitive postulates. They are statistical regularities that arise when large ensembles of discrete coincidence events are aggregated and smoothed. This section demonstrates that motion is neither translation through a pre-existing void nor displacement along a worldline. Motion is the redistribution of finite causal resources between two distinct modes of correlation: temporal self-correlation and spatial cross-correlation. The Minkowski interval is not the cause of this redistribution; it is its continuous approximation.

The finite budget of events

Every physical system is characterized by a finite rate of coincidence event production. A cesium atom does not emit an infinite number of ticks per second; it emits exactly 9,192,631,770 cycles per definitional second. A human heart does not beat infinitely fast; it beats approximately once per second. A photon detector does not fire continuously; it fires upon discrete absorption events. This finitude is not a practical limitation but a deep structural feature of physical reality.

In the Ze interpretation, each system possesses a total event budget. This budget is allocated across two distinct categories of correlation. The first category, temporal correlation, comprises events in which the system coincides with itself across successive states—the ticking of an internal clock, the progression of a metabolic cycle, the increment of a counter. The second category, spatial correlation, comprises events in which the system coincides with external markers—the passage of a milestone, the arrival of a light pulse, the collision with another particle.

A system at rest relative to its environment allocates the maximum possible fraction of its event budget to temporal self-correlation. Its clock ticks rapidly because few events are required to register spatial coincidences. A system in motion must allocate a larger fraction of its event budget to spatial correlations. It must register passage events, emission events, reception events. Because the total event budget is finite, this increased allocation to spatial correlations necessarily reduces the allocation to temporal self-correlation. The clock ticks less frequently. This is not time dilation; it is budgetary reallocation.

The conservation of total correlations

The central postulate of the Ze kinematic theory is that the total number of causally connected coincidence events available to a system along any segment of its existence is invariant under changes of motion. Let N_{total} represent the total event count for a given process. This total decomposes into two orthogonal components:

$$N_{\text{total}}^2 = N_{\text{temporal}}^2 + N_{\text{spatial}}^2$$

This decomposition is not arbitrary. It reflects the fact that temporal self-correlations and spatial cross-correlations are mutually exclusive uses of a finite causal capacity. Every moment spent registering a spatial coincidence is a moment not spent incrementing the internal clock. Every heartbeat not occurring because the traveler is attending to the passage of stars is a heartbeat subtracted from the aging process.

The orthogonal decomposition—the sum of squares rather than a simple sum—expresses the causal independence of the two correlation modes. Temporal correlations are directed along the system's own stream; spatial correlations are directed across streams. These two directions are perpendicular in the space of causal connections. A system cannot simultaneously register a coincidence with itself and a coincidence with a distant marker; these are distinct event types that do not interfere but also do not overlap.

This structural insight has been anticipated in the literature on causal set theory. Bombelli, Lee, Meyer, and Sorkin (1987) proposed that spacetime is fundamentally a discrete partially ordered set of events, with the continuum metric emerging as a large-scale approximation. The Ze interpretation adopts the causal set commitment to discrete events and partial order but diverges by identifying temporal order with the specific chains of events constituting a single physical system. The Minkowski interval emerges not from the causal set structure alone but from the allocation of event density across timelike and spacelike separations.

Derivation of the Minkowski structure

Consider a system undergoing a sequence of N_{total} coincidence events over some extended process. In the rest frame of the system, spatial correlations are minimized. Let the maximal number of temporal self-correlations achievable under these ideal conditions be $N_{\text{temporal}}^{\text{max}}$. This corresponds to the proper time elapsed for a system at rest: $\tau = \alpha * N_{\text{temporal}}^{\text{max}}$.

Now consider the same system undergoing the same total number of events N_{total} while in motion. The motion requires the system to register spatial coincidence events. Let N_{spatial} represent the number of such events. Because total event count is conserved, the number of temporal self-correlations available is reduced:

$$N_{\text{temporal}}^2 = N_{\text{total}}^2 - N_{\text{spatial}}^2$$

The squared form follows from the causal orthogonality of the two correlation channels. If the system registers a spatial coincidence, it does not partially reduce its temporal count; it diverts an entire event from temporal to spatial registration. The Euclidean metric in the space of counts is the simplest consistent with this exclusivity.

Now define the normalized velocity beta as the ratio of spatial correlation events to total events:

$$\beta = N_{\text{spatial}} / N_{\text{total}}$$

Then:

$$N_{\text{temporal}} = N_{\text{total}} * \sqrt{1 - \beta^2}$$

This is precisely the Lorentz factor. The proper time elapsed for the moving system is:

$$\tau = \alpha * N_{\text{temporal}} = \alpha * N_{\text{total}} * \sqrt{1 - \beta^2}$$

If we identify $\alpha * N_{\text{total}}$ with the coordinate time T of an inertial observer who is at rest relative to the process, we recover the standard time dilation formula:

$$\tau = T * \sqrt{1 - \beta^2}$$

The Minkowski interval $ds^2 = dt^2 - dx^2/c^2$ emerges when we take the continuous limit. Define $dt = \alpha * dN_{\text{total}}$ and $dx = \alpha * c * dN_{\text{spatial}}$. Then:

$$d\tau^2 = dt^2 - dx^2 / c^2$$

The metric structure of special relativity is not assumed; it is derived from the conservation of total event count and the orthogonal decomposition of event types.

The physical meaning of the interval

In standard relativity, the invariant interval ds^2 is a primitive geometric quantity. It is the same for all observers and defines the causal structure of spacetime. In Ze, the interval is a derived statistical quantity. It represents the number of temporal self-correlations remaining after spatial cross-correlations have been subtracted.

This inversion has profound interpretive consequences. The interval is not the cause of clock behavior; it is the clock behavior. When a physicist computes the proper time along a worldline by integrating the metric, they are not discovering a pre-existing temporal extent; they are

reconstructing the total count of local coincidence events from aggregate data about motion. The geometry is a summary, not an explanation.

This perspective is consonant with the dynamical approach to relativity defended by Brown (2005), who argues that the behavior of clocks and rods is not explained by spacetime structure but rather constitutes the empirical basis for inferring that structure. Ze provides a specific mechanism for this constitution: the allocation of a finite event budget across competing correlation channels. The metric is not a cause but a bookkeeping device.

Velocity as a correlation ratio

The Ze interpretation yields a novel definition of velocity. In standard physics, velocity is the time derivative of position: $v = dx/dt$. This definition presupposes both time and space as independently defined quantities. In Ze, neither time nor space is primitive. Both are derived from event counts.

Velocity is redefined as the ratio of spatial correlation events to temporal correlation events, scaled by the conversion factor c :

$$v = c * (N_{\text{spatial}} / N_{\text{temporal}})$$

This is equivalent to the standard definition but reverses the direction of explanation. Velocity is not the rate of change of position; it is the ratio of two distinct types of coincidence counts. A system moving at velocity v allocates its event budget such that for every N_{temporal} self-correlations, it registers $N_{\text{spatial}} = (v/c) * N_{\text{temporal}}$ spatial correlations.

The invariant speed c appears as the maximum possible ratio. As N_{spatial} approaches N_{total} , N_{temporal} approaches zero. No system can allocate all its events to spatial correlations because some events must be reserved for the self-coincidences that constitute the system's identity over time. The speed of light is not a velocity limit imposed by spacetime geometry; it is a saturation limit on the correlation budget. A photon, having no internal clock, allocates 100% of its events to spatial correlations and therefore registers zero temporal self-correlations. This is not motion at maximum speed; this is the absence of an internal counter.

Empirical support and experimental consequences

The conservation of total event count is not directly testable because N_{total} is not independently measurable. However, the derived relation between N_{temporal} and N_{spatial} is empirically equivalent to the Lorentz transformation and is therefore supported by the same vast body of evidence that confirms special relativity.

The Hafele-Keating experiment (Hafele & Keating, 1972) measured precisely the difference in N_{temporal} for clocks undergoing different allocations of spatial correlations. The GPS system continuously performs such measurements. Particle accelerators observe the reduced decay

counts of fast-moving muons, which is exactly a reduction in N_{temporal} due to increased N_{spatial} . In each case, the data support the Ze derivation.

A potential discriminative test would involve comparing the counts of different types of clocks under identical motion profiles. If the event budget and the orthogonality of correlation channels are truly universal, all stable periodic systems should exhibit identical reductions in N_{temporal} for a given N_{spatial} . This is the clock hypothesis in operational form. Existing experiments with atomic clocks, optical clocks, and Mossbauer spectroscopy are consistent with this universality. Future experiments with higher precision will continue to test it.

Summary

Motion in Ze is not displacement through space over time. Motion is the redistribution of a finite budget of coincidence events from temporal self-correlation to spatial cross-correlation. The total event count is conserved; the composition of that count is not. The Minkowski interval is the continuous approximation of the orthogonal decomposition of event types. Time dilation is not a geometric effect but a budgetary necessity: a system that spends events on spatial coincidences necessarily has fewer events available for self-coincidences. The traveling twin ages less because she allocated more of her finite event budget to the process of traveling and less to the process of aging. The paradox is resolved not by geometry but by accounting.

Numerical Time Dilation: The Count-Derived Lorentz Factor

The Lorentz factor $\gamma = 1 / \sqrt{1 - v^2/c^2}$ is usually presented in textbooks as a consequence of the postulates of special relativity, derived from the invariance of the speed of light and the relativity principle. Students are taught that time dilation is a geometric property of spacetime, often illustrated with light clocks and mirror reflections. While pedagogically useful, these derivations obscure the fact that time dilation is not an exotic effect requiring metaphysical reinterpretation of time itself. In the Ze interpretation, the Lorentz factor emerges directly from the arithmetic of finite event budgets. No new postulates are required beyond the operational definition of proper time and the conservation of total correlations. This section demonstrates that numerical time dilation is not a mysterious slowing of time but a straightforward consequence of counting.

The fundamental relation

Let Twin E remain in a state of minimal spatial correlation, allocating virtually its entire event budget to temporal self-correlation. Over the course of the experiment, E's counter registers N_E ticks. Let Twin T undergo the same process while in motion, registering N_T ticks upon reunion. The total number of causally connected coincidence events available to each twin over the duration of the experiment is not directly measurable, but the ratio of their final counts is.

From the conservation of total event count and the orthogonal decomposition of correlation channels established in Section 5, we obtain:

$$N_T = N_E * \sqrt{1 - v^2}$$

where v is the normalized velocity defined as the ratio of spatial correlation events to total events:

$$v = dN_{\text{spatial}} / dN_{\text{total}}$$

This expression is dimensionless and lies in the interval $[0, 1)$. In conventional units, the normalized velocity is v/c , yielding the familiar form:

$$N_T = N_E * \sqrt{1 - v^2/c^2}$$

Multiplying both sides by the normalization constant alpha converts counts to seconds:

$$\tau_T = \tau_E * \sqrt{1 - v^2/c^2}$$

This is the standard time dilation formula. No clocks are dilated. No time flows slowly. The traveling twin simply registers fewer ticks because her finite event budget has been partially allocated to spatial correlations rather than temporal self-correlations.

Velocity as expenditure ratio

The definition of velocity in Ze requires careful attention. In standard physics, velocity is a kinematic quantity measuring displacement per unit time. In Ze, displacement and time are both derived from counts, and velocity is the ratio of two distinct count types.

Consider a small segment of T's journey. During this segment, T's counter advances by dN_{total} events. Some fraction of these events are allocated to spatial correlations: interactions with the environment, reception of signals, passage of milestones. Let dN_{spatial} represent this spatial allocation. The normalized velocity is then:

$$v = dN_{\text{spatial}} / dN_{\text{total}}$$

This definition is not arbitrary. It follows from the empirical fact that a system at rest allocates $dN_{\text{spatial}} = 0$, yielding $v = 0$. A system moving at the speed of light allocates $dN_{\text{spatial}} = dN_{\text{total}}$, yielding $v = 1$ (or $v = c$ in conventional units). All intermediate velocities correspond to intermediate allocations.

This conception of velocity has deep roots in the relational tradition. Leibniz, in his correspondence with Clarke, insisted that motion is not a state but a relation between bodies (Alexander, 1956). Ze extends this relationalism from the kinematic to the temporal domain: velocity is not a property of motion through space but a property of the correlation structure between a system and its environment.

Derivation without spacetime diagrams

The standard derivation of time dilation typically involves a light clock oriented perpendicular to the direction of motion. A pulse of light bounces between two mirrors; for a moving observer, the path length is longer, and the tick rate is slower. This derivation is elegant and intuitive, but it relies on the constancy of the speed of light and the geometry of Minkowski spacetime.

The Ze derivation requires neither light clocks nor geometry. It requires only counting. Consider T's journey divided into infinitesimal segments. In each segment, T registers dN_{total} total events. Of these, dN_{spatial} are registered as spatial coincidences. Because spatial correlations and temporal self-correlations are orthogonal and mutually exclusive, the number of temporal self-correlations in the segment is:

$$dN_{\text{temporal}} = \sqrt{dN_{\text{total}}^2 - dN_{\text{spatial}}^2}$$

This follows from the Pythagorean relation established in Section 5.3. The proper time elapsed for T during this segment is:

$$d\tau_T = \alpha * dN_{\text{temporal}} = \alpha * dN_{\text{total}} * \sqrt{1 - (dN_{\text{spatial}}/dN_{\text{total}})^2}$$

For Twin E, who allocates negligible events to spatial correlations, $dN_{\text{spatial}} \approx 0$ and $dN_{\text{temporal}} \approx dN_{\text{total}}$. Thus:

$$d\tau_E = \alpha * dN_{\text{total}}$$

Taking the ratio eliminates alpha and dN_{total} :

$$d\tau_T / d\tau_E = \sqrt{1 - v^2}$$

Integrating over the entire journey yields the total count ratio. No geometry, no simultaneity conventions, no clock hypothesis. The derivation is complete.

The empirical content of gamma

The Lorentz factor $\gamma = 1 / \sqrt{1 - v^2/c^2}$ is often treated as a mathematical convenience. In Ze, it receives a direct physical interpretation. Gamma is the ratio of total events to temporal events:

$$\gamma = N_{\text{total}} / N_{\text{temporal}} = 1 / \sqrt{1 - v^2}$$

It measures how many total events are required to produce a single temporal self-correlation. For a system at rest, $\gamma = 1$: each total event yields one temporal event. For a system moving at $v = 0.866c$, $\gamma = 2$: two total events are required to produce one temporal event. Half the event budget is spent on spatial correlations; only half remains for aging.

This interpretation demystifies the large gamma factors achieved in particle accelerators. A muon at rest has a mean lifetime corresponding to approximately $N_{\text{temporal}} = 2.2$ microseconds * (α^{-1}) ticks. When accelerated to $v = 0.9994c$, $\gamma \approx 30$. The muon now

requires 30 total events to produce each temporal event. Its lifetime, measured in the laboratory frame, appears extended by a factor of 30. The muon does not experience time slowly; it simply spends 96.7% of its event budget on spatial correlations with the accelerator environment, leaving only 3.3% for internal aging.

Bailey et al. (1977) measured precisely this effect for muons stored in the CERN Muon Storage Ring. Their results confirmed the relativistic prediction to a precision of 0.1%. The Ze interpretation offers an alternative language for describing these results: the muons' event budgets were redistributed by their circular motion, reducing the count of decay events per laboratory event.

The speed of light as budget limit

The speed of light c appears in the Ze formalism as the maximum possible ratio of spatial to total events. As v approaches 1 (c in conventional units), γ diverges and N_{temporal} approaches zero. No system with an internal clock can achieve this limit because a finite N_{temporal} is required to maintain the system's identity over time.

This resolves a longstanding puzzle in the foundations of relativity. Why is the speed of light invariant and maximal? In the geometric approach, this is a postulate. In Ze, it is a consequence of the definition of velocity as an event ratio and the impossibility of allocating 100% of events to spatial correlations while maintaining a stable internal counter. A photon, which lacks an internal clock, allocates $N_{\text{spatial}} = N_{\text{total}}$ and therefore has no defined proper time. The invariance of c follows from the universality of the conversion factor between spatial coincidence events and standard clock ticks.

This interpretation is consonant with the dynamical approach of Bell (1976), who proposed that Lorentz invariance might be explained by physical interactions with a preferred frame. Ze differs in rejecting the preferred frame while retaining the dynamical explanation: the Lorentz factor is not a geometric necessity but a statistical regularity in the allocation of discrete events.

Numerical examples

Consider a twin journey with $\beta = v/c = 0.8$. Then $\gamma = 1 / \sqrt{1 - 0.64} = 1 / \sqrt{0.36} = 1 / 0.6 \approx 1.667$. The time dilation factor is 0.6. If Twin E ages 10 years, Twin T ages 6 years.

In Ze terms, for every 10 events registered by E as temporal self-correlations, T registers only 6 temporal events. The remaining 4 events are allocated to spatial correlations required by the motion. These spatial events are not lost; they are registered as interactions with the environment. The traveler experiences more events per unit proper time, but these events are of a different type. She has more experiences but fewer birthdays.

This reframing addresses a common student objection: if time is relative, why does the traveler not perceive her own clock as running slow? In Ze, the traveler's clock runs at exactly one tick per temporal event. It never runs slow in her own frame. The asymmetry is not in the rate of

ticking but in the total count. She has fewer ticks because she spent some of her event budget on spatial coincidences.

Summary

Numerical time dilation in Ze is not a postulate but a theorem. Given the operational definition of proper time as $\alpha * N_{\text{temporal}}$ and the conservation of total event count with orthogonal decomposition into temporal and spatial components, the relation $N_T = N_E * \sqrt{1 - v^2}$ follows directly. Velocity is redefined as the ratio of spatial correlation events to total events. The Lorentz factor gamma is reinterpreted as the ratio of total events to temporal events, measuring the overhead required to maintain motion. The speed of light is the maximum possible allocation to spatial correlations, approached but never attained by systems with internal clocks. The traveling twin ages less because she spent more of her finite event budget on the journey and less on the aging. No paradox remains.

Where the Paradox Disappears: Causal Paths and Count Non-Additivity

The persistence of the twin paradox in pedagogical and foundational discussions testifies not to any empirical anomaly but to the remarkable tenacity of certain conceptual intuitions. Chief among these is the assumption that time is a universal quantity that flows at the same rate for all observers, and that apparent differences in elapsed time must be reconciled through symmetry arguments. The Ze interpretation eliminates the paradox at its root by exposing the falsity of this assumption. Time is not a universal flow; it is a local count. Counts are not additive across different causal paths. The two twins do not experience different rates of a single common time; they traverse distinct causal chains and accumulate different quantities of causally valid events. Upon reunion, the comparison of their counters reveals a numerical inequality that requires no further explanation. This section demonstrates why the paradox does not arise within the Ze framework and why attempts to reinstate it rest on a mistaken ontology of time.

The non-additivity of counters

In standard arithmetic, counts are additive. If Alice has five apples and Bob has three apples, the total number of apples is eight. This additivity holds because apples are independent of the paths by which they were acquired. A apple acquired by purchase is fungible with an apple acquired by harvest.

Counters in Ze are not additive in this sense. The number of ticks registered by Twin E's clock and the number registered by Twin T's clock cannot be summed to yield a meaningful total. More importantly, the difference between them cannot be attributed to a differential rate of a common underlying substance called time. Each counter tracks only its own causal history. The ticks on E's clock are events in E's causal stream; the ticks on T's clock are events in T's causal

stream. These streams are disjoint except at the initial separation event and the final reunion event.

This non-additivity has a direct mathematical consequence. Let N_E represent the count accumulated by E along causal chain C_E . Let N_T represent the count accumulated by T along causal chain C_T . There exists no invariant relation of the form $N_E = N_T + \Delta$ that holds prior to reunion. The two counts are incommensurable until the counters are brought into local coincidence. At the moment of reunion, the empirical fact is simply:

$$N_T < N_E$$

This inequality is not a paradox requiring reconciliation with a symmetric description. It is the raw datum from which all theorizing must begin. As Bridgman (1927) emphasized in his operationalist critique, a concept that cannot be verified by operations is empirically meaningless. The symmetry of the twins prior to reunion is such a concept. No operation can verify that the two clocks are running at the same rate while they are separated and in relative motion. The appearance of symmetry is an artifact of coordinate-dependent descriptions, not a feature of physical reality.

Causal path dependence

The Ze interpretation makes explicit what the geometric account leaves implicit: the two twins traverse causal chains of different lengths. A causal chain is not a worldline in a pre-existing spacetime manifold. It is a sequence of locally connected coincidence events, each linked to its predecessor by a causal relation.

Twin E's causal chain consists primarily of temporal self-correlations: heartbeats, clock ticks, metabolic cycles. These events are densely packed and require minimal allocation to spatial correlations. Twin T's causal chain includes the same types of temporal self-correlations but interspersed with spatial correlation events: the ignition of the rocket engine, the passage of distant stars, the reflection of radar signals, the deceleration at the turnaround point. Each spatial correlation event consumes part of T's finite event budget without contributing to the temporal self-correlations that constitute aging.

The crucial insight is that causal chains are not fungible. An event on T's chain cannot be exchanged for an event on E's chain. The two chains share no common metric of duration independent of their respective counts. The only comparison possible is the direct reading of the two counters when they are brought into coincidence at the reunion event.

This causal path dependence aligns with the causal set theory developed by Bombelli, Lee, Meyer, and Sorkin (1987), in which spacetime is replaced by a discrete partially ordered set of events. In causal set theory, the proper time along a chain of causally connected events is proportional to the number of links in the chain. The Ze interpretation adopts this identification of proper time with chain length but restricts it to the specific chains constituting persistent physical systems. The twin paradox dissolves because the twins simply traverse chains of different lengths.

The asymmetry of causal topology

A persistent objection to the twin paradox resolution is the claim that the situation is symmetric: from T's perspective, it is E who moves and should therefore age less. This objection confuses kinematic symmetry with causal topology.

In special relativity, inertial motion is relative. There is no fact of the matter about whether T moves away from E or E moves away from T during the outbound phase. However, the twin scenario is not symmetric with respect to causal topology. T undergoes an acceleration event at the turnaround point; E does not. This acceleration is not merely a change in velocity; it is a transition between distinct causal classes.

During the outbound phase, T's causal chain consists of events that are receding from E's causal chain. During the inbound phase, T's causal chain consists of events that are approaching E's causal chain. The turnaround event marks the boundary between these two causal regimes. E's causal chain undergoes no such transition.

This topological asymmetry ensures that the two causal chains are not isomorphic. They cannot be mapped onto each other by any transformation that preserves the local causal structure. Therefore, there is no reason to expect their lengths to be equal. As Maudlin (2012) has argued, the twin paradox is only paradoxical if one mistakenly assumes that time is a parameter rather than a quantity. Once time is recognized as a quantity that measures the length of a causal trajectory, the asymmetry is exactly what one should expect.

Acceleration as causal recategorization

The role of acceleration in the twin paradox has been a subject of enduring controversy. Some accounts treat acceleration as the cause of the age difference; others insist that acceleration is irrelevant and only the integrated velocity matters. Both positions contain partial truth, but neither captures the full picture.

In Ze, acceleration is neither the cause of the age difference nor irrelevant. Acceleration is the event at which T's causal stream recategorizes its relationship to E's causal stream. Prior to acceleration, T's spatial correlations were dominated by recession; after acceleration, they are dominated by approach. The acceleration event itself consumes a small number of temporal self-correlations—the rocket firing consumes event budget—but its primary role is to change the allocation pattern for subsequent events.

This recategorization is not a violation of relativity. It is a local, observable event. T feels the acceleration. Instruments on board T record the firing of thrusters. Fuel is consumed. These are physical events that leave traces in T's causal stream. E experiences none of these events. The asymmetry is not imposed from without; it is inscribed in the causal histories of the two systems.

Grünbaum (1973) offered a detailed philosophical analysis of this asymmetry, concluding that the clock hypothesis and the conventionality of simultaneity render the twin paradox entirely consistent with relativity. Ze strengthens this conclusion by eliminating the need for a clock

hypothesis altogether. The asymmetry is not an inference from the geometry; it is directly read from the counters.

Why no paradox ever arises

Within the Ze interpretation, the twin paradox does not arise at any stage of the analysis. It is not resolved; it is dissolved. The apparent paradox emerges only when one illicitly imports a Newtonian conception of time into a relativistic context.

Consider the steps that generate the paradox in standard presentations:

1. Both twins start with synchronized clocks.
2. They separate and reunite.
3. Relativity says motion is relative, so each twin should see the other's clock running slow.
4. Therefore, each twin should expect the other to be younger upon reunion.
5. Both cannot be younger; contradiction.

The Ze interpretation rejects step 3. Motion is not fully relative because the twins do not occupy symmetric causal positions. T's causal chain includes an acceleration event; E's does not. The principle of relativity applies to inertial motion, not to causal topology. There is no symmetry to be violated.

Furthermore, Ze rejects the premise that each twin "sees" the other's clock running slow in any physically meaningful sense. What each twin observes is the rate of arrival of signals from the other twin. These rates are asymmetric during the journey. T observes a reduced rate during outbound and an increased rate during inbound. E observes the opposite pattern. Neither observation contradicts the other because they are observations of different physical processes.

As Mermin (2005) has emphasized, the twin paradox is not a paradox of logic but a paradox of intuition. Our intuition, trained in a Newtonian world, expects time to be absolute. When mathematics shows that it is not, we experience cognitive dissonance. Ze does not change the mathematics; it provides a new intuition. Time is not a river flowing uniformly for all; it is a ledger maintained locally by each physical system. Ledgers that record different transactions show different balances.

The empirical fact

Upon reunion, the empirical fact is that T's counter shows fewer ticks than E's counter. This fact is not explained by geometry, by the Lorentz transformation, or by the relativity of simultaneity. It is explained by the simple observation that T allocated more of her finite event budget to spatial correlations and less to temporal self-correlations.

No further explanation is required. The paradox disappears when we stop asking why T's clock registered fewer ticks and start accepting that it simply did. The task of physics is not to explain why the counts differ; the task is to predict the magnitude of the difference given the motion profile. This the Ze interpretation accomplishes, yielding the same quantitative predictions as special relativity.

As Einstein himself reportedly remarked to a correspondent struggling with the twin paradox: "The problem is simply that people will not accept that the traveling twin really is younger." The Ze interpretation removes the last refuge of this refusal. The traveling twin is younger because her clock counted fewer ticks. That is what being younger means.

Summary

The paradox vanishes when time is recognized as a local count rather than a universal parameter. Counters are not additive across different causal paths. The twins traverse causal chains of different lengths, with T's chain containing additional spatial correlation events that consume event budget without contributing to aging. Acceleration does not cause the age difference but marks the transition between causal regimes. The situation is not symmetric because the causal topologies of the two twins are not isomorphic. Upon reunion, the comparison of counters yields $N_T < N_E$. This is not a paradox requiring resolution; it is the empirical fact from which theorizing begins.

Geometric Formulation: Causal Chains Without Pre-Existing Metric

The Ze interpretation, while operationally grounded in local counters and discrete coincidence events, admits a natural geometric formulation. This formulation reveals that the twin effect is not a peculiar consequence of relativistic kinematics but a trivial property of partially ordered structures. In any causal graph, distinct paths between the same two events may have different lengths. The twin paradox is simply the physical manifestation of this mathematical triviality when the graph is sufficiently rich and the vertices are interpreted as real events. This section develops the geometric formulation of Ze within the framework of causal set theory, demonstrates the complete equivalence of the two approaches, and shows that the metric of general relativity emerges as a coarse-grained approximation of causal path counts.

The causal set interpretation of Ze

A causal set is a discrete partially ordered set whose elements represent primitive events and whose order relation represents the possibility of causal influence (Bombelli, Lee, Meyer, & Sorkin, 1987). The fundamental hypothesis of causal set theory is that spacetime is such a structure at the Planck scale, with the continuum manifold emerging as an approximation in the limit of large numbers.

The Ze interpretation adopts the causal set ontology but restricts its domain of application. In full causal set theory, the entire universe is a single causal set. In Ze, we consider only the causal chains constituting persistent physical systems. Each twin's world is not the entire causal set but a specific chain within it.

Let the reunion event be designated R and the initial separation event be designated S. Twin E traverses a maximal chain C_E of causally connected events from S to R. Twin T traverses a distinct maximal chain C_T from S to R. The proper time elapsed for each twin is proportional to the length of their respective chain:

$$\tau_E = \alpha * |C_E|$$

$$\tau_T = \alpha * |C_T|$$

where $|C|$ denotes the number of causal links in the chain. The twin effect is the statement that $|C_T| < |C_E|$. This is not a paradox; it is a statement about the relative lengths of two paths sharing common endpoints in a partially ordered set.

This formulation reveals the triviality of the twin paradox. In any graph or network, distinct paths between the same two vertices can have different lengths. No one finds this paradoxical when discussing road networks or electrical circuits. The appearance of paradox in relativity stems solely from the mistaken assumption that time is a universal background parameter rather than a path-dependent count. Once time is recognized as path length, the twin effect becomes as unsurprising as the fact that a flight from New York to Tokyo is shorter than a flight from New York to Tokyo via London.

The causal metric

Causal set theory introduces a discrete analogue of the Lorentzian metric. For any two causally related events x and y, the proper time between them is proportional to the length of the longest chain connecting them (Bombelli et al., 1987). This is the discrete counterpart of the proper time interval in general relativity.

Ze adopts this definition but inverts the direction of explanation. In standard causal set theory, the fundamental entity is the causal set itself, and proper time is derived from its structure. In Ze, the fundamental entities are the local counters, and the causal set is constructed from the correlations between them. Both approaches converge on the same mathematical structure but with different ontological commitments.

Let $d(x,y)$ denote the causal distance between events x and y, defined as the number of links in the longest chain from x to y. For the twins, we have:

$$\tau_E = \alpha * d(S,R)_E$$

$$\tau_T = \alpha * d(S,R)_T$$

where $d(S,R)_E$ is the length of E's chain and $d(S,R)_T$ is the length of T's chain. The subscript indicates that these are different maximal chains through the same endpoints. The causal set contains both chains; the twins merely traverse different subsets of its elements.

This formulation makes explicit that the twin effect is not a dynamical phenomenon requiring explanation in terms of forces or accelerations. It is a kinematic phenomenon, like the fact that a geodesic on a sphere is shorter than any neighboring curve. The acceleration at turnaround is not the cause of the age difference; it is the marker of the point at which T's chain diverges from the geodesic of the background causal structure.

Path dependence and the non-uniqueness of maximal chains

In a flat spacetime continuum, the maximal proper time between two timelike separated events is unique: it is the geodesic followed by an inertial observer. Any accelerated path between the same endpoints is shorter. This is the standard explanation of the twin paradox in general relativity.

In a causal set, the situation is more subtle. There may be multiple maximal chains between two events, particularly in regions of low curvature. The twin effect is the statement that the chain traversed by T is not among the maximal chains. It is shorter because it includes additional elements—spatial correlation events—that do not contribute to the causal distance measured along the chain.

This path dependence is not a defect of the theory but a feature. It reflects the physical fact that different histories allocate event budgets differently. The causal set records all events; the twins experience only subsets. The length of their experience is the number of events they actually register, not the maximum possible number between S and R.

As Sorkin (1991) has emphasized, causal set theory predicts stochastic fluctuations in proper time due to the discrete nature of the underlying structure. These fluctuations are unobservably small at macroscopic scales but become significant near the Planck scale. Ze does not require such fluctuations; its discreteness is operational rather than ontological. However, the mathematical framework of causal sets provides a precise language for expressing the path dependence of elapsed proper time.

The emergence of the Minkowski metric

If the causal set is sufficiently dense and the chains are sufficiently long, the discrete causal distance approximates the continuum proper time interval. Specifically, in the limit of large N, the length of the longest chain between two events converges to the geodesic proper time in the emergent Lorentzian manifold (Bombelli et al., 1987).

This convergence provides the link between Ze and standard relativity. The Minkowski metric is not a primitive postulate but a derived approximation. When we compute $ds^2 = dt^2 - dx^2/c^2$, we are performing a coarse-graining over enormous numbers of discrete causal links. The

geometric formulation of special relativity is valid at macroscopic scales precisely because the underlying causal set is well-approximated by a smooth Lorentzian manifold.

Ze offers a constructive account of this approximation. The continuous variables t and x are emergent from discrete counts N_{temporal} and N_{spatial} . The Minkowski interval ds^2 is the continuum representation of the Pythagorean relation $dN_{\text{total}}^2 = dN_{\text{temporal}}^2 + dN_{\text{spatial}}^2$. Geometry does not explain counting; counting explains geometry.

This perspective aligns with the dynamical approach to relativity advocated by Brown (2005), who argues that the behavior of rods and clocks is not explained by spacetime structure but rather constitutes the empirical basis for inferring that structure. Ze provides the specific mechanism: the structure of Minkowski spacetime is a summary of the statistical regularities governing the allocation of discrete event counts.

The twin effect as trivial combinatorics

Within the causal set formulation, the twin effect reduces to a combinatorial triviality. Consider two chains between S and R. Let chain C_E consist entirely of temporal self-correlation events. Let chain C_T consist of the same number of temporal events interspersed with N_{spatial} spatial correlation events. Because the causal set is partially ordered, the spatial events are not causally related to the temporal events in the same chain; they are inserted between them without increasing the causal distance from S to R.

The length of C_E is N_E . The length of C_T is $N_E + N_{\text{spatial}}$ if we count all events, but the causal distance from S to R along C_T is only N_E because the spatial events are not causally effective links. They are, in the language of causal set theory, unrelated elements that do not contribute to the maximal chain length.

Thus, the proper time experienced by T is proportional to N_E , not to $N_E + N_{\text{spatial}}$. The spatial correlation events are experienced by T—they consume event budget and are registered by her counter—but they do not constitute temporal duration. They are, so to speak, time spent on something other than aging.

This is the discrete analogue of the familiar fact that accelerated paths are shorter than geodesics. The acceleration events themselves are not the cause of the shortening; they are the markers of the path's deviation from the geodesic. In the causal set, the geodesic is the longest chain; any chain that includes elements not on the longest chain is necessarily shorter.

No paradox in the causal graph

The twin paradox, when translated into causal set language, ceases to be a paradox and becomes a tautology. Given two paths between the same vertices in a directed acyclic graph, either they have the same length or they do not. If they have different lengths, the traveler on the shorter path registers fewer causal links. This is not a paradox; it is the definition of length.

The persistence of the paradox in the literature testifies not to any difficulty in the physics but to the difficulty of relinquishing the Newtonian conception of time. Students are taught that time is what clocks measure, but they are not taught to take this operational definition seriously. They are taught instead that clocks measure a pre-existing geometric quantity called proper time. When the mathematics shows that this quantity is path-dependent, they experience cognitive dissonance because their intuitive concept of time remains absolute.

Ze resolves this dissonance by taking operationalism seriously. Time is what clocks measure. Clocks measure counts. Counts are path-dependent. Therefore, time is path-dependent. There is no deeper fact about the geometry of spacetime that causes this path-dependence; the geometry is simply a convenient way of summarizing the counts.

As Rovelli (2004) has argued throughout his work on relational quantum mechanics, the apparent paradoxes of modern physics often arise from treating mathematical abstractions as concrete realities. Spacetime is such an abstraction. The causal set is less abstract, but it remains a mathematical representation of physical events. The counters themselves are the reality. Their readings are the data. Geometry is the map; counts are the territory.

Summary

The geometric formulation of Ze within causal set theory reveals the twin paradox as a trivial property of partially ordered structures. Proper time is the length of a maximal causal chain between initial and final events. The twins traverse distinct chains with common endpoints. The traveling twin's chain is shorter because it includes spatial correlation events that do not contribute to causal distance. The Minkowski metric emerges as a coarse-grained approximation of discrete causal structure. No paradox remains because there is nothing to explain beyond the empirical fact that distinct paths can have different lengths. The only mystery is why this triviality was ever considered paradoxical.

Connection with Special Relativity: From Postulate to Emergence

The Ze interpretation is not a rival to special relativity. It is a reconstruction of special relativity from more primitive operational and ontological foundations. The mathematical formalism of Lorentzian geometry is preserved in its entirety; only its explanatory status is transformed. Where special relativity postulates the Minkowski metric and derives clock behavior, Ze postulates clock behavior and derives the Minkowski metric. This section systematically compares the two frameworks, demonstrating their empirical equivalence and their profound conceptual divergence. The twin paradox, inexplicable under the geometric interpretation, becomes transparent under the constructive interpretation.

The structural correspondence

The formal correspondence between special relativity and Ze is exact. Every equation in one framework maps to an equation in the other under the following translation:

Special Relativity	Ze Interpretation
Coordinate time dt	Total event count dN_{total}
Proper time $d\tau$	Temporal correlation count dN_{temporal}
Spatial displacement dx	Spatial correlation count dN_{spatial} (scaled by c)
Metric interval $ds^2 = dt^2 - dx^2/c^2$	Event conservation $dN_{\text{total}}^2 = dN_{\text{temporal}}^2 + dN_{\text{spatial}}^2$
Lorentz factor $\gamma = dt/d\tau$	Event ratio $\gamma = dN_{\text{total}} / dN_{\text{temporal}}$
Velocity $v = dx/dt$	Correlation ratio $v/c = dN_{\text{spatial}} / dN_{\text{total}}$

This correspondence is not accidental. The Ze relations were derived specifically to reproduce the empirical predictions of special relativity while eliminating its geometric ontology. Any successful constructive interpretation of relativity must satisfy such a correspondence; otherwise it would be empirically falsified.

The mapping reveals that special relativity and Ze are not competing theories but complementary descriptions. Special relativity provides the efficient calculus; Ze provides the interpretation. As Einstein himself distinguished, a principle theory begins with empirically observed regularities and derives formal constraints, while a constructive theory begins with hypothetical mechanisms and derives the regularities (Einstein, 1919). Special relativity, as originally formulated, is a principle theory. Ze is an attempt to provide a constructive counterpart.

9.2 The status of the metric

The most fundamental divergence between special relativity and Ze concerns the ontological status of the Minkowski metric. In special relativity, the metric is a primitive element of the theory. It is postulated as the invariant structure of spacetime, and clock behavior is derived from it via the clock hypothesis. The metric explains why clocks tick as they do.

In Ze, this order of explanation is reversed. The metric is not primitive but emergent. It is a continuous approximation of the discrete Pythagorean relation between event counts. Clocks do

not measure the metric; the metric summarizes clock behavior. As Brown (2005) has argued, the clock hypothesis is not a logical necessity but an empirical discovery. Ze makes this discovery explicit: the reason clocks appear to measure the metric is that the metric is constructed from clock readings.

This reversal has profound implications for the interpretation of relativity. If the metric is emergent, then spacetime is not the arena of physics but a derived structure. The true arena is the network of discrete events and their causal relations. Spacetime is to events what fluid dynamics is to molecular motion: a useful approximation valid at scales much larger than the discreteness scale.

This position aligns with the causal set program initiated by Bombelli, Lee, Meyer, and Sorkin (1987), in which spacetime is replaced by a discrete partially ordered set of events. Ze differs from causal set theory in treating the discreteness as operational rather than fundamental, but both approaches agree that the continuum metric is not the ultimate reality.

Time as coordinate versus time as count

In special relativity, time is a coordinate. It is one dimension of a four-dimensional manifold, interchangeable with spatial coordinates under Lorentz transformations. The proper time experienced by a clock is the integral of the metric along its worldline. This mathematical structure is elegant and powerful, but it invites a mistaken ontology: the temptation to reify the coordinate system and treat coordinate time as a physical entity.

In Ze, time is not a coordinate but a count. It has no metric structure independent of the events counted. The coordinate time of special relativity is reinterpreted as the total event count of an inertial observer calibrated in conventional units. This reinterpretation eliminates the temptation to reify coordinate time. There is no time of the universe; there are only times of individual clocks.

This operational conception of time has deep roots in the positivist tradition. Bridgman (1927) argued that a concept is synonymous with the set of operations used to measure it. Time is what clocks measure; clocks measure periodic processes; therefore time is the number of periods counted. Ze takes Bridgman's operationalism seriously and extends it from epistemology to ontology. Time is not merely measured by counts; time is counts.

Hafele and Keating (1972), in their famous around-the-world atomic clock experiment, did not measure time dilation; they measured count differences. Four cesium beam clocks were flown eastward and westward around the Earth. Upon return, their counters were compared with reference clocks at the United States Naval Observatory. The eastward clocks had counted fewer ticks; the westward clocks had counted more ticks. This is precisely what Ze predicts. The interpretation of these count differences as evidence for a curved spacetime geometry is a theoretical overlay, not a direct observation.

Velocity as derivative versus velocity as ratio

In special relativity, velocity is defined as the derivative of position with respect to coordinate time: $v = dx/dt$. This definition presupposes the independent existence of both spatial coordinates and temporal coordinates. It treats space and time as fundamentally distinct quantities that are subsequently united in the Lorentz transformation.

In Ze, velocity is defined as the ratio of spatial correlation events to total events: $v/c = dN_{\text{spatial}} / dN_{\text{total}}$. This definition does not presuppose independent space and time coordinates. Both spatial and temporal correlations are derived from the same primitive event stream. Velocity is not a rate of change but a composition ratio.

This redefinition resolves a long-standing puzzle in the foundations of relativity. If time and space are both derived from counts, why does the speed of light appear as an invariant limit? In Ze, the answer is straightforward: the speed of light is the maximum possible value of the ratio $dN_{\text{spatial}} / dN_{\text{total}}$. No system with an internal clock can allocate 100% of its events to spatial correlations because some events must be reserved for the temporal self-correlations that maintain the system's identity over time. The invariance of c follows from the universality of this limit across all physical systems.

This interpretation is consonant with the dynamical approach to relativity defended by Bell (1976), who proposed that Lorentz invariance might be explained by physical interactions with a preferred frame. Ze differs in rejecting the preferred frame while retaining the dynamical explanation: the Lorentz factor is not a geometric necessity but a statistical regularity in event allocation.

The twin paradox: geometric versus constructive

The twin paradox is the litmus test for any interpretation of relativity. A geometric interpretation treats the paradox as a puzzle about the geometry of spacetime. Why is the traveling twin's worldline shorter? Because it is not a geodesic. Why does this matter? Because proper time is the length of the worldline. The explanation is mathematically complete but conceptually unsatisfying. It tells us that the age difference is required by the geometry, but not why the geometry has this property.

A constructive interpretation treats the paradox as a straightforward consequence of the underlying mechanism. The traveling twin ages less because she spent part of her finite event budget on spatial correlations rather than temporal self-correlations. The geometry is not the cause of the age difference; it is the summary. This explanation is not only mathematically complete but conceptually transparent.

The difference between these two explanations is the difference between kinematics and dynamics. Special relativity provides the kinematics of time dilation; it tells us how much clocks differ given their motion. Ze provides the dynamics; it tells us why they differ given their event allocation. Both are valid descriptions at different levels of analysis.

As Mermin (2005) has emphasized, the twin paradox is not a logical contradiction but a failure of intuition. Our intuition, trained in a Newtonian world, expects time to be absolute. Special relativity corrects this intuition but does not replace it with a new intuition. Ze provides that new intuition: time is not a river but a ledger. Ledgers with different transactions show different balances.

Empirical equivalence and theoretical choice

Special relativity and Ze are empirically equivalent. Every observable prediction of one theory is also a prediction of the other. They are related by a change of interpretation, not a change of mathematics. This raises a question: if the theories are empirically indistinguishable, what grounds could there be for preferring one over the other?

The grounds are conceptual, not empirical. Ze eliminates the twin paradox without residue. It provides a constructive mechanism for time dilation rather than treating it as a geometric primitive. It aligns the ontology of time with the operational definition of time used in actual metrological practice. It unifies the treatment of time across classical and quantum contexts by reducing it to countable events.

These are not empirical advantages but explanatory advantages. They do not make Ze more true than special relativity; they make it more intelligible. As Einstein (1919) himself acknowledged, constructive theories are preferable to principle theories when they are available because they provide deeper understanding. Ze is an attempt to provide such understanding for the phenomenon of time dilation.

This project is not without precedent. Lorentz (1904) attempted to construct a dynamical explanation of length contraction and time dilation in terms of molecular forces. His theory was empirically equivalent to special relativity but was ultimately abandoned due to its ad hoc character and its commitment to an undetectable ether. Ze avoids these defects by grounding the constructive mechanism not in speculative forces but in the operational definition of time itself.

Summary

The connection between special relativity and Ze is one of complementary description. Special relativity postulates the Minkowski metric and derives clock behavior; Ze postulates clock behavior and derives the Minkowski metric. The formal correspondence between the two frameworks is exact, ensuring empirical equivalence. The conceptual divergence is profound. In special relativity, time is a coordinate and the metric is primitive. In Ze, time is a count and the metric is emergent. The twin paradox, which appears as a puzzle about worldline geometry in special relativity, appears as a trivial consequence of event budget allocation in Ze. Both frameworks are valid; Ze offers greater intelligibility.

Conclusion: The Dissolution of the Paradox

The twin paradox has persisted in the foundations of relativity not because it reveals any inconsistency in the theory, but because it exposes a deep tension between our intuitive conception of time and the operational meaning of time measurement. Special relativity provides the correct mathematics for calculating clock differences, but it does not, by itself, provide an intuitive ontology that makes those differences intelligible. The geometric interpretation, for all its elegance, invites the question: why should the length of a worldline in a four-dimensional manifold correspond to the number of ticks registered by a physical clock? The clock hypothesis asserts that it does; the Ze interpretation explains why.

Summary of the framework

The Ze interpretation rests on three fundamental postulates. First, time is not a background parameter or a geometric coordinate but a local count: $\tau_A = \alpha * N_A$, where N_A is the number of causally connected coincidence events registered by system A and α is a conventional normalization coefficient. Second, the total event budget of a system is conserved and orthogonally decomposes into temporal self-correlations and spatial cross-correlations: $dN_{\text{total}}^2 = dN_{\text{temporal}}^2 + dN_{\text{spatial}}^2$. Third, velocity is the ratio of spatial correlation events to total events: $v/c = dN_{\text{spatial}} / dN_{\text{total}}$.

From these postulates, the entire kinematic structure of special relativity follows without additional assumptions. The Lorentz factor $\gamma = dN_{\text{total}} / dN_{\text{temporal}}$ emerges as the overhead required to maintain motion. The Minkowski metric $ds^2 = dt^2 - dx^2/c^2$ emerges as the continuum approximation of the discrete Pythagorean relation between event counts. The invariance of the speed of light emerges as the maximum possible allocation of events to spatial correlations. No geometry is postulated; all geometry is derived.

The twin scenario is then trivial. Twin E and Twin T share common initial and final coincidence events. Between these boundaries, they traverse distinct causal chains through the event network. Twin E's chain consists predominantly of temporal self-correlations; Twin T's chain contains the same number of temporal events interspersed with additional spatial correlation events required by her motion. These spatial events consume event budget without contributing to causal distance along the chain. Upon reunion, the comparison of counters yields $N_T < N_E$. This is not a paradox; it is the definition of traveling.

What the Ze interpretation accomplishes

The Ze interpretation achieves four distinct conceptual advances.

First, it eliminates the clock hypothesis as an independent postulate. In special relativity, the claim that ideal clocks measure proper time is an additional assumption, logically independent of the light postulate and the relativity principle. In Ze, this claim is not an assumption but a

definition. Proper time is clock time; clock time is count; therefore proper time is count. No hypothesis is required.

Second, it provides a constructive mechanism for time dilation. Time dilation is not a geometric necessity imposed by the structure of spacetime; it is a budgetary necessity imposed by the conservation of total event count. A system that spends events on spatial correlations necessarily has fewer events available for temporal self-correlations. The Lorentz factor is not a mystery; it is an accounting ratio.

Third, it unifies the treatment of time across physical contexts. Atomic clocks, biological aging, particle decay times, and gravitational redshift are all manifestations of the same underlying quantity: the accumulation of causally connected coincidence events. The SI definition of the second is not a measurement convention but an ontological revelation: time is countable.

Fourth, it dissolves the twin paradox without residue. The paradox arises only when one assumes that time is a universal parameter that should accumulate identically for all observers. Once time is recognized as a path-dependent count, the asymmetry between the twins is exactly what one should expect. As Mermin (2005) has observed, the paradox is not in the physics but in the intuition. Ze provides a new intuition.

Relation to other foundational programs

The Ze interpretation stands in productive relation to several established research programs in the foundations of physics.

With causal set theory (Bombelli, Lee, Meyer, & Sorkin, 1987), Ze shares the commitment to discrete events and causal order as primitive. Ze differs in treating the discreteness as operational rather than fundamental, but the mathematical structures are closely related. The proper time of a causal chain is, in both frameworks, proportional to the number of links in the maximal chain between endpoints. The twin effect is the statement that distinct chains between the same endpoints may have different lengths.

With relational quantum mechanics (Rovelli, 1996), Ze shares the commitment to relational definitions of physical quantities. Time is not an absolute background but a relation between systems. The reading of a clock is not a measurement of a pre-existing temporal quantity but the constitution of that quantity. Ze extends Rovelli's relationalism from the quantum to the classical domain and from the definition of time to its metric structure.

With the dynamical approach to relativity (Brown, 2005), Ze shares the conviction that the behavior of clocks and rods is not explained by spacetime geometry but rather constitutes the empirical basis for inferring that geometry. Ze provides a specific dynamical mechanism—the conservation and orthogonal decomposition of event counts—that Brown's program leaves unspecified.

With operationalism (Bridgman, 1927), Ze shares the methodological principle that concepts are synonymous with the operations used to measure them. Ze extends operationalism from

epistemology to ontology: time is not merely measured by counts; time is counts. This extension is justified by the completeness and consistency of the resulting framework.

Limitations and open questions

The Ze interpretation, as developed in this paper, is restricted to the kinematics of special relativity. Several important extensions remain for future work.

The incorporation of general relativity requires a generalization of the event conservation postulate. In curved spacetime, the total event budget available to a system may depend on the gravitational potential. Preliminary work suggests that the gravitational redshift can be reinterpreted as a reduction in the rate of temporal self-correlations due to the increased density of spatial correlation events required to maintain position in a gravitational field. Whether this reduction follows the same Pythagorean form as kinematic time dilation remains to be rigorously established.

The extension to quantum mechanics requires a theory of indefinite causal order. If events are not always causally related, the definition of proper time as the length of a maximal causal chain becomes ambiguous. However, the operational definition of time as count survives this ambiguity: a quantum clock is still a device that registers coincidence events. The challenge is to derive the temporal probabilities of quantum mechanics from the statistics of such events without presupposing a background time parameter. This is precisely the program pursued by Fong et al. (2016) and others.

The ontological status of spatial correlations requires further analysis. In the present formulation, dN_{spatial} is treated as a primitive, but spatial coincidence events are themselves correlations between systems. A fully relational theory should define spatial correlations in terms of more primitive relations among events, perhaps along the lines of the causal set approach. Work in this direction is ongoing.

Final remark

The twin paradox is not a paradox. It is a direct observation of a fundamental fact about physical reality: time is not a river but a ledger. The ledger of a system that moves contains more entries for spatial correlations and fewer entries for temporal self-correlations than the ledger of a system that remains at rest. When the ledgers are brought together and compared, the totals differ. This difference requires no explanation beyond the simple arithmetic of addition and subtraction.

Special relativity provides the rules for calculating how much the totals will differ given the motion. Ze provides the understanding of why they differ. Together, they offer a complete account: the mathematics of spacetime and the ontology of counts. The paradox vanishes not because it is resolved but because it was never there. It was a ghost generated by the reification of an abstraction, and like all such ghosts, it disappears when the light of operational definition is shone upon it.

The traveling twin is younger because she counted fewer causally connected events. That is what being younger means.

References

Alexander, H. G. (Ed.). (1956). *The Leibniz-Clarke correspondence*. Manchester University Press.

Bailey, J., Borer, K., Combley, F., Drumm, H., Krienen, F., Lange, F., ... & Farley, F. J. M. (1977). Measurements of relativistic time dilatation for positive and negative muons in a circular orbit. *Nature*, 268(5618), 301–305.

Barbour, J. (1999). *The end of time: The next revolution in physics*. Oxford University Press.

Bell, J. S. (1976). How to teach special relativity. *Progress in Scientific Culture*, 1(2), 1–13. Reprinted in *Speakable and unspeakable in quantum mechanics* (2nd ed., pp. 67–80). Cambridge University Press.

Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Space-time as a causal set. *Physical Review Letters*, 59(5), 521–524.

Bondi, H. (1962). *Relativity and common sense: A new approach to Einstein*. Doubleday.

Bridgman, P. W. (1927). *The logic of modern physics*. Macmillan.

Brown, H. R. (2005). *Physical relativity: Space-time structure from a dynamical perspective*. Oxford University Press.

Bureau International des Poids et Mesures. (2019). *The International System of Units (SI)* (9th ed.). BIPM.

Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. *Annalen der Physik*, 17(10), 891–921.

Einstein, A. (1919). What is the theory of relativity? *The Times* (London), November 28, 1919. Reprinted in *Ideas and opinions* (pp. 227–232). Crown Publishers.

Fong, K., Galli, M., & Ghirardi, G. C. (2016). Deriving the time order in relativistic quantum mechanics from the detection process. *Physical Review A*, 94(4), 042117.

Fong, K., Galli, M., & Ghirardi, G. C. (2016). Deriving the time order in relativistic quantum mechanics from the detection process. *Physical Review A*, 94(4), 042117.

Grünbaum, A. (1973). *Philosophical problems of space and time* (2nd ed.). D. Reidel.

Hafele, J. C., & Keating, R. E. (1972). Around-the-world atomic clocks: Predicted relativistic time gains. *Science*, 177(4044), 166–168.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. *Issues and Developments in Medicine and Medical Research* Vol. 2, 22-31.

Lorentz, H. A. (1904). Electromagnetic phenomena in a system moving with any velocity less than that of light. *Proceedings of the Royal Netherlands Academy of Arts and Sciences*, 6, 809–831.

Maudlin, T. (2012). *Philosophy of physics: Space and time*. Princeton University Press.

Mermin, N. D. (2005). *It's about time: Understanding Einstein's relativity*. Princeton University Press.

Reichenbach, H. (1958). *The philosophy of space and time*. Dover Publications.

Rovelli, C. (1996). Relational quantum mechanics. *International Journal of Theoretical Physics*, 35(8), 1637–1678.

Rovelli, C. (1996). Relational quantum mechanics. *International Journal of Theoretical Physics*, 35(8), 1637–1678.

Rovelli, C. (2004). Quantum gravity. Cambridge University Press.

Sorkin, R. D. (1991). Spacetime and causal sets. In J. C. D'Olivo, E. Nahmad-Achar, M. Rosenbaum, M. P. Ryan, L. F. Urrutia, & F. Zertuche (Eds.), *Relativity and gravitation: Classical and quantum* (pp. 150–173). World Scientific.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. *Molecular Biology Reports*, 50(3), 2751-2761. DOI : <https://pubmed.ncbi.nlm.nih.gov/36583780/>

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycation and oxidative stress. *Front Pharmacol*. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. *Annals of Rejuvenation Science*, 1(1). DOI : <https://doi.org/10.65649/yx9sn772>

Tkemaladze, J. (2026). Visions of the Future. *Longevity Horizon*, 2(1). DOI : <https://doi.org/10.65649/8be27s21>