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Abstract

This paper presents a novel derivation of the Minkowski metric from first principles within the
framework of Ze dynamics. | demonstrate that the fundamental structure of spacetime,
characterized by the Lorentzian interval ds? = —c®dt? + dx?, emerges not as an a priori geometric
postulate but as a statistical invariant of a discrete, information-theoretic substrate. The primitive
elements are counters updated by a stream of events, governed by a statistically conserved
quadratic sum. A critical functional bifurcation separates the dynamics into a temporal channel,
defined by sequential, order-dependent prediction error, and a spatial channel, defined by
parallel, order-invariant structural differences. The inherent antagonism between these
channels—where spatial stabilization is paid for by temporal destabilization—forces their
contributions to combine with opposite signs in the conserved quantity, thereby deriving the
minus sign of the metric signature. The constant ¢ emerges as a conversion factor between the
natural scales of the two counting processes. The resulting interval, computed via a concrete
numerical algorithm, recovers the kinematics of Special Relativity in the continuum limit, with the
light cone arising as a numerical stability boundary for coherent signal propagation within the
network. This work reframes Minkowski spacetime as an effective geometry, positing that space
and time are emergent operational modes of information processing rather than fundamental
dimensions.

Keywords: Emergent Spacetime, Minkowski Metric, Ze Dynamics, Information-Theoretic
Foundations, Special Relativity, Causal Structure, ZDV.
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Introduction: The Objective and Conceptual
Foundation

The fundamental geometry of spacetime in special relativity, encapsulated in the Minkowski
metric with its distinctive negative sign, is traditionally introduced as a postulate. This
foundational axiom, which separates timelike from spacelike intervals, underlies the entirety of
relativistic kinematics and dynamics. While empirically robust, its origin within a deeper
theoretical framework remains a subject of profound inquiry. The primary objective of this work
is to demonstrate that the signature and structure of the Minkowski metric, specifically the
expression ds? = —¢2dt? + dx?, can emerge not from an a priori geometric postulate, but from the
intrinsic counting statistics and state-space dynamics of a system governed by what we term
"Ze dynamics." In this formalism, dt and dx are not fundamental, continuous coordinates but
rather effective, coarse-grained variables derived from underlying discrete state transitions.
Crucially, the negative sign, the defining feature of the Lorentzian metric signature, is shown to
arise naturally from the combinatorial structure of counting paths in a dual-state network,
representing a fundamental asymmetry between activation and propagation phases.

This approach aligns with a broader research direction seeking to derive relativistic phenomena
from pre-geometric, information-theoretic, or quantum-gravitational principles (Bombelli, Lee,
Meyer, & Sorkin, 1987; Rovelli, 1991). The Ze dynamics framework posits that an observed
"event" is the macroscopic manifestation of a completed cycle within a network of binary states.
Each cycle consists of two fundamental, irreducible phases: a temporal activation phase, which
is a prerequisite step that does not translate to a change in an external configuration label, and
a spatial propagation phase, which updates an external positional register. This dichotomy is
reminiscent of the distinction between internal "clock" degrees of freedom and external spatial
coordinates in models of emergent spacetime (Fong et al., 2016; Vedral, 2010).

The central hypothesis is that the counting of possible histories leading to an observed
macro-state—a pair (f, x) interpreted as time and position—follows a statistical distribution that,
in the continuum limit, is governed by an action-like quantity. This quantity takes the form of a
squared interval. The sign of the contributions from the activation and propagation phases to
this statistical weight is determined by their respective roles in the state-counting combinatorics.
The activation phase, being internally constrained and obligatory, contributes with a sign
opposite to that of the proliferating, branching possibilities of the propagation phase. This is a
direct consequence of the inherent non-commutativity in the sequence of operations within Ze
dynamics, an algebraic structure analogous to that observed in certain quantum walks and
pregeometric models (Kauffman, 2015; Singh, 2017). The emergence of the constant cc* is then
a scaling factor relating the natural units of counting in the temporal activation lattice to those in
the spatial propagation lattice, setting a universal conversion rate akin to a "signal speed" within
the network.

The derivation proceeds as follows: We first define the discrete microstates and transition rules
of the Ze dynamics model. We then enumerate the number of distinct micro-histories N(T, X)
that yield a given macro-coordinate (T, X), where T and X are discrete counts of activation and
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propagation steps, respectively. Using Stirling-type approximations for large counts, we show
that the logarithm of this number, which corresponds to an entropy S = log N, takes the
asymptotic form S(T, X) = A — (1/2)K(aT? — BX?), where A, K, a, and (3 are positive constants
determined by the network's connectivity. The statistical weight exp(S) for a history thus
becomes proportional to exp(—K | ), where the quantity | = (aAt? — BAx?) appears in the
exponent, with At and Ax being the continuum limits of T and X.

The functional form of | is immediately recognizable. By identifying the most probable history as
the one minimizing | (maximizing S), we obtain a variational principle. Defining ¢ = sqrt(B/a) and
choosing units where the scaling factor K is absorbed into the definition of the interval, the
fundamental object governing the statistics of paths becomes | = At? — (1/c?)Ax2. This is
precisely the Lorentzian squared interval, up to a sign convention. The negative signature is
therefore not postulated; it is a direct output of the subtraction inherent in the asymptotic form of
the counting entropy, which itself originates from the different combinatorial roles of the two
phase types in the Ze dynamics.

This result provides a novel perspective on the nature of spacetime intervals. It suggests that
the Minkowski metric is primarily a statistical descriptor, encoding the relative likelihood of
different coarse-grained histories in an underlying discrete dynamics. The causal structure
(timelike, null, spacelike separation) emerges from the dominance of certain statistical
ensembles of micro-histories over others. The proposed mechanism offers a concrete, albeit
simplified, model that contributes to the discourse on the informational origins of spacetime
structure (Fong et al., 2016; Rovelli, 1991). The following sections will detail the formal structure
of Ze dynamics, the precise combinatorial derivation, the analysis of the continuum limit, and a
discussion of the implications and potential connections to quantum foundations and quantum
gravity phenomenology.

The Fundamental Ze Quantity: A Counting
Invariant

The Ze dynamics framework is predicated on a minimalist ontological assumption: an
observable world is the emergent, coarse-grained picture of a discrete, stochastic process of
state transitions. The fundamental elements are not points in a continuum but discrete events
and the counting registers they update. Before any notion of geometry or metric can arise, one
must define the intrinsic, pre-geometric quantities that characterize the state of the system. In
this section, we introduce the core invariant of Ze dynamics, a conserved sum of squares
analogous to the squared norm in quantum state evolution or the conservation of energy in
physical systems. This invariant serves as the bedrock from which the properties of emergent
spacetime will be shown to crystallize.

Let us define the primitive constituents. We consider a discrete, ordered sequence of input
events, denoted as e_k, where the index k labels the sequential order of occurrence. These
events are not yet "spacetime events" but abstract triggers or stimuli for the internal dynamics of
the system. Associated with the system is a set of N internal counters, C_i, where *i = 1, 2, ...,
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N*. These counters are non-negative integers that represent the accumulated "activity" or
"response” along N independent, abstract channels. Each input event e_k induces an increment
(or, in a generalized model, a possible decrement) in one or more of these counters. We denote
the change in counter i due to event e_k as AC_i(k). The update rule is simply C_i(k) = C_i(k-1)
+ AC_i(k).

The central postulate of Ze dynamics is the existence of a global, conserved (or statistically
conserved) quantity constructed from these counters. We define the Ze invariant | as the sum of
the squares of all counter values:

(1) 1= 2_{i=13{N} (C_i)~

This quadratic form is reminiscent of the squared Euclidean norm of a vector C=(C_1,C_2, ...,
C_N). The dynamical rule is constrained such that, despite the individual counters C_i
fluctuating in response to the stochastic input stream, the total value of | is maintained invariant
on average, or within a bounded range, over the course of the dynamical evolution. This is not a
strict, step-by-step conservation law but a statistical one, maintained through a specific
regulatory mechanism involving filtering and resets.

The conservation mechanism operates as follows. The input events e_k are filtered; only those
whose associated increments AC_i(k) would not drive | beyond a certain soft upper bound are
allowed to update the counters fully. An event that would cause a violation of this bound triggers
a different protocol: a coordinated reset. During a reset, a subset of counters is decremented in
a correlated manner designed precisely to restore the value of | to a baseline level, akin to a
dissipation or relaxation process. This create-and-dissipate cycle is crucial. It ensures that the
system operates in a non-equilibrium steady state where | hovers around a mean value,
exhibiting small fluctuations, much like the energy in a driven-dissipative system maintained at a
fixed point (Tél, 2015). This statistical conservation is analogous to the preserved norm of a
state vector under unitary evolution in quantum mechanics, where the overall probability is
conserved despite the flow of amplitude between different bases (Nielsen & Chuang, 2010).

The significance of a sum of squares as the fundamental invariant cannot be overstated. Firstly,
it is a positive-definite quantity, providing a natural measure of the total "scale" or "intensity" of
the system's state. Secondly, and more importantly for our geometric emergence program, it is
quadratic. In the continuum limit, where discrete counts C_i are interpreted as components
along some axes, the preservation of a quadratic form is the hallmark of a metric. The invariant |
can be written as | = CAT - G - *C, where G is the identity matrix in this pre-geometric space.
This simple Euclidean metric in the high-dimensional counter space is the seed from which the
low-dimensional Lorentzian metric of spacetime will sprout.

This structure finds parallels in several pre-geometric approaches to spacetime. For instance,
the causal set program postulates a discrete set of events with a partial order, and the
continuum geometry is to be recovered from the counting of causal relations (Bombelli, Lee,
Meyer, & Sorkin, 1987). Here, the counters C_i can be interpreted as a coarser measure,
aggregating such relational data. Similarly, in some quantum informational approaches, the
emergence of a metric is linked to the conservation of informational purity or the constraints on
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correlation growth (Fong et al., 2016). The Ze invariant | plays precisely such a constraining
role, limiting the total "activity" and enforcing correlations between counter updates during
resets.

The next step is to introduce the critical bipartition of the N counters into two distinct classes. Let
us designate one special counter, C_0, which possesses a unique property: its increments are
prerequisite for any subsequent update in the other N-7 counters, which we denote as C_|j
(where j =1, 2, ..., N-1). The counter C_0 will be the progenitor of the temporal dimension, while
the ensemble of C_j counters will give rise to spatial degrees of freedom. This functional
asymmetry in the dynamics—the requirement of "activation" via C_0 before "propagation” in the
C_j—is the origin of the fundamental distinction between time and space in the emerging
picture. The invariant | now reads:

(2) 1= (C_0) + 2_{j=1}N-1} (C_j)>

The statistical conservation of | implies that an increase in the sum of squares from the spatial
sector, £ (C_j)?, must, on average, be compensated by a dynamics that ultimately leads to a
corresponding adjustment in (C_0)?, or vice-versa. It is from the statistical interplay between
these two sectors, governed by the conservation of this simple quadratic form, that the relative
minus sign in the Minkowski interval will be born. The following section will detail this bipartite
dynamics and the combinatorial counting of histories that leads to the Lorentzian signature.

Bifurcation into Temporal and Spatial Channels

The homogeneous, high-dimensional counter space defined by the invariant | = ¥ (C_i)?
contains no intrinsic geometric distinction. All counters are formally equivalent. The emergence
of a causal structure with a privileged temporal dimension requires a symmetry-breaking
mechanism within the dynamics. This section delineates this crucial step: the bifurcation of the
global Ze dynamics into two operationally distinct modes. These modes are defined not by
labeling counters a priori as "time" or "space," but by the functional role their increments play in
processing the event stream. We identify a sequential-temporal channel, sensitive to order and
prediction, and a parallel-spatial channel, sensitive to correlation and configuration.

The Temporal Component T: Sequential Variability and Prediction Error

The first mode characterizes change that is fundamentally dependent on the sequential order of
events. In Ze dynamics, not all event-induced increments are equal. A significant class of
updates is tied to the system's internal model of event sequences. The system maintains an
implicit prediction of likely subsequent events based on prior sequences (Friston, 2010). When
an input event e_k deviates from this prediction, it generates a prediction error signal.

We define the temporal component increment, AT, at step kK as a measure constructed from
these sequential deviations. Specifically, we consider a subset of counters—let us call them
sequential counters S_i—whose updates are governed by the following rule: their increment
AS_i(k) is proportional to the mismatch between the actual event e_k and the event predicted
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based on the sequence (e_{k-1}, e {k-2}, ...). In the simplest linearized form, this error can be
represented as a weighted sum of differences. The squared temporal increment for a
macro-step (an aggregate over many micro-events) is then defined as the sum of squares of
these sequential counter changes:

(1) AT2 = 3_{i € Sequential} (AS_i)2.

This quantity, AT?, measures the total squared sequential variability or surprise (in a formal
information-theoretic sense) incurred over that interval (Friston, 2010). It is a metric of pure
change, of the inexorable flow that distinguishes one ordered sequence from another. Crucially,
it is a magnitude that accumulates only because events happen in a specific order; a permuted
sequence with the same set of events would yield a different AT2. This sensitivity to order, to the
directedness of the process, is the fundamental signature of temporality. The temporal
coordinate T itself is the cumulative sum (the integral) of these AT increments, rooted in a
chosen origin. It is important to note that T is not a pre-existing background parameter but an
emergent, internal measure of accumulated sequential discord.

The Spatial Component S: Parallel Structural Difference

In contrast to the sequential mode, the second mode characterizes change that is invariant to
the order of events and instead depends on the correlational structure between concurrent or
complementary channels. This involves a different subset of counters, which we term parallel
counters P_j. These counters are updated not primarily by prediction errors on the event
stream, but by the co-activation patterns across channels. For instance, certain events may
simultaneously increment one subset of P_j counters while decrementing another, mirroring or
inverting patterns.

The spatial component is derived from comparing structural distributions. Consider a "snapshot"
of the parallel counter state vector P = (P_1, P_2, ..., P_M) at a given point in the process. A
change in the spatial configuration is measured not by the order-dependent surprise, but by the
difference between two such snapshots, treated as geometric objects in the M-dimensional
parallel space. We define the squared spatial interval AS? between two states P and P' as the
squared Euclidean distance between their normalized or baseline-corrected configurations:

(2) AS? = Z_{=1}{M} (AP_j)?, where AP_j=(P'_j-P_j)/ k.

Here, Kk is a normalization constant related to the mean activity level, ensuring that AS?
measures a relative, structural difference rather than an absolute change in overall scale (which
is already governed by the global invariant I). The increments AP_j are computed from the net
change over an interval, irrespective of the detailed sequence of updates within that interval.
This quantity is inherently permutation-invariant with respect to the micro-ordering of events that
led to the net change {AP_j}; only the final distribution matters. This property—order
invariance—is the hallmark of a spatial degree of freedom. It captures the idea of a "state of
affairs" or a "configuration" that can be arrived at via multiple equivalent histories, much like the
position of an object is independent of the precise sequence of infinitesimal movements that
brought it there (Rovelli, 1991).
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The operational distinction is now clear. The temporal channel T monitors the directed process
of information update (the "how" in sequence), while the spatial channel S monitors the resulting
configuration (the "what" in state). They engage different aspects of the underlying counter
network. Crucially, both are expressed within the same mathematical language of sums of
squares of counter increments, reflecting their common origin in the quadratic invariant I. This
shared language is what will allow them to be combined into a single interval.

Interplay and the Path to a Unified Interval

The dynamics of Ze enforce a tight coupling between these two modes through the statistical
conservation of the global invariant | (Eq. 1, Section 2). Recall that | = Z (C_i)?* includes
contributions from both sequential (S_i) and parallel (P_j) counters: | = £ (S_i)* + ¥ (P_j)>

A significant update in the spatial configuration (a large  (AP_j)?) necessarily alters the Z (P_j)?
term. To maintain statistical conservation of I, this alteration must be compensated by an
opposite change in the Z (S_i)? term over the relevant statistical ensemble. This compensatory
mechanism is implemented through the reset protocol mentioned in Section 2. A large spatial
reconfiguration that threatens to increase | triggers a reset that strategically adjusts the
sequential counters, often by dissipating accumulated prediction error (surprise) in a
coordinated fashion. This introduces a fundamental statistical anticorrelation: histories with large
accumulated spatial changes AS? tend to be associated with histories that have concomitantly
large (but opposite in sign) adjustments in the squared temporal measure AT?.

It is this statistical anticorrelation, enforced by the conservation law, that plants the seed for the
minus sign in the metric. The invariant | can be reinterpreted in terms of changes. For two
system states separated by a coarse-grained interval, the conservation implies that the sum %
(S_i)? + £ (P_j)? is roughly constant. Therefore, the variation A[Z (S_i)?] between these states is
approximately the negative of the variation A[% (P_j)?]. Identifying A[Z (S_i)?] with (AT)? and A[X
(P_j)?] with (AS)? up to scaling factors, we arrive at a conserved quantity of the form (AT)? -
(AS)? = constant. This heuristic argument will be made rigorous in the next section through a
combinatorial analysis of micro-histories, which will yield the precise asymptotic form of the path
weight, exp(-aAT? + BAS?), revealing the Lorentzian signature directly from the counting
statistics.

Antiparallel Contributions and the Origin of the
Minus Sign

The bifurcation into temporal (T) and spatial (S) channels establishes two distinct modalities of
change. However, the profound feature of relativistic spacetime—the Lorentzian
signature—arises not merely from their distinction, but from the specific, oppositional
relationship between them. In this section, we demonstrate how the core operational axioms of
Ze dynamics naturally enforce a statistical anticorrelation between the squared increments of
these channels. This anticorrelation manifests mathematically as a difference in their
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contributions to a conserved quantity, thereby introducing the critical minus sign that
differentiates a spacetime interval from a mere Euclidean distance.

The Stabilization-Destabilization Axiom

The dynamical engine of Ze is driven by a principle of efficient state management, reminiscent
of thermodynamic or information-theoretic optimization principles (Friston, 2010; Tishby, Pereira,
& Bialek, 1999). We posit the following foundational axiom derived from the system's function:
Growth in structural stabilization (spatial configuration) is necessarily accompanied by a
reduction in prediction error (temporal surprise), and vice-versa.

Operationally, this axiom emerges from the interplay between the parallel (P) and sequential (S)
counter networks. A "spatially" stabilized configuration corresponds to a state of the parallel
counters P that is highly resilient to perturbations, meaning it requires minimal subsequent
updates to its pattern to accommodate incoming events. This often corresponds to a state of
high symmetry or low potential energy within the internal model. Achieving such a state,
however, is not free. It requires the system to resolve prediction errors—that is, to process
surprising, order-dependent information—which actively updates and tunes the internal model.
This resolution process is registered in the sequential counters S. Once a stable configuration is
reached, the immediate prediction error (the temporal derivative of surprise) drops.

Conversely, a surge in prediction error (a large AT?) signifies that the system's current internal
model is poorly matched to the incoming sequence. This is a state of high instability or free
energy (Friston, 2010), which forces a destabilization of the current spatial configuration (P) as
the system searches for a new model that can better predict the stream. Thus, AS? and AT? are
antagonists in the system's phase space: one cannot increase without a compensatory
decrease in the other over a relevant averaging scale. This is not a strict, instantaneous equality
but a statistical tendency enforced by the dynamics, analogous to the trade-off between
exploration (high surprise, configuration change) and exploitation (low surprise, configuration
stability) in adaptive systems (Mehlhorn et al., 2015).

From Anticorrelation to a Difference Invariant

Recall the global Ze invariant from Section 2: | = ¥ (C_i)%. Under the bipartition, this becomes | =
Z (S_i)? + £ (P_j)® Let us denote the coarse-grained, emergent quantities for a transition
between two macroscopic states:

e The temporal measure: Q_T = % (S_i)2 Its change is AQ_T.
e The spatial measure: Q_S = X (P_j)2 Its change is AQ_S.

The statistical conservation of | implies that, on average, AQ_T + AQ_S = 0 over an ensemble
of transitions between macrostates. Therefore, AQ_S = — AQ_T. This is the mathematical
expression of the antiparallel relationship.
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We now connect these abstract measures to the operationally defined intervals AT? and AS?
from Section 3. The sequential surprise AT? is proportional to the positive accumulation in AQ_T
(an increase in squared sequential counters). The structural change AS? is proportional to the
positive accumulation in AQ_S (an increase in squared parallel counters). However, due to the
conservation law AQ_S = — AQ_T, an increase in one necessitates a decrease in the other. To
construct a quantity that remains invariant (or nearly so) during a transition, we must therefore
combine them with opposite signs.

This leads to the definition of a new, emergent interval A¢:
(1)Af =AQ_S-yAQ_T,

where y is a positive scaling constant that converts the units of the temporal measure into the
units of the spatial measure. Substituting the proportionalities AQ_S o< AS? and AQ_T o AT?,
we obtain the fundamental form:

(2) A% = a AS? — B AT?.

The minus sign appears automatically and unavoidably. It is the direct mathematical
consequence of the antiparallel link (AQ_S = — AQ_T) imposed by the conservation of the
primary invariant |. The coefficients a and B absorb the proportionality constants and the scaling
y. Crucially, the sign is negative because temporal increments (prediction error) represent a
destabilizing, energy-like cost the system pays, while spatial increments represent a stabilizing,
configuration gain it acquires. Their contributions to the net "action" of a history are therefore
opposite (Fong et al., 2016).

The Emergence of the Conversion Factor ¢

The coefficient ratio B/a in Eq. (2) carries dimensions of [S?/T?]. It defines a fundamental scale
relating a unit of structural change to a unit of sequential surprise. We can define a constant ¢
such that:

3)cc=p/a.
The interval then becomes:
(4) AF = a (AS? - c* AT?).

The constant c is the emergent "speed of light" or causal scale factor in the theory. It represents
the maximum rate at which structural information (a stable configuration) can propagate through
the network relative to the accumulation of sequential surprise. Histories for which AS? > ¢ AT?
(A¥ > 0) are spacelike: they represent transitions where configuration change dominates over
sequential order, accessible via multiple equivalent sequences. Histories where AS? < ¢ AT?
(A% < 0) are timelike: they are dominated by the directed flow of sequential surprise, defining a
unique causal order. The null case AS? = ¢ AT? (A% = 0) defines the lightcone, separating these
regimes.
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This is precisely the structure of the Minkowski metric. By a simple rescaling of variables,
defining dt = VB AT and dx = Ya AS, we obtain, up to an overall factor, the familiar expression:

(5) ds? = — ¢? d2 + dx2.

The minus sign in front of the temporal component is no longer a postulate of relativity; it is a
derived consequence of the anticorrelation between stabilization and destabilization processes
in Ze dynamics, itself a consequence of the conservation of the quadratic invariant I. The
temporal component is not fundamentally "negative"; rather, its contribution to the conserved
interval is opposite to that of the spatial component due to their competing roles in the system's
state dynamics. This result provides a concrete, mechanistic origin for the Lorentzian signature,
grounding it in the statistics of information processing and state conservation.

Numerical Recipe and Practical Implementation

The previous sections established the theoretical foundation for the emergence of a
Minkowski-like interval from Ze dynamics. To transition from a conceptual framework to a
falsifiable model, this section provides a concrete, step-by-step numerical algorithm. This recipe
translates the abstract definitions of temporal and spatial components into computable
quantities derived from a raw stream of discrete events. The output is a robust, averaged metric
interval ds?, demonstrating the practical viability of the derivation.

The algorithm operates on a time-ordered sequence of input symbols or event identifiers. It
requires an initialized Ze system with a defined set of N counters, C_i, and pre-configured
connection rules that determine the begin (canonical) and inverse (complementary) update
paths for each event type. The calibration constant y (or ¢) can be determined empirically from
system equilibrium or derived from first principles of the network topology.

Step 1: Stream Processing and Increment Tracking

The input is a discrete stream of events, e k, for k=1, 2, ..., K. For each incoming event e_k at
step k, the Ze dynamics engine executes its update rules. Crucially, we track two vectors of
counter increments simultaneously:

e The begin increments, AC_i,k*{begin}: These are the standard updates to counters
C_i as triggered by the event e k following the primary, or "canonical," association
pathways. These increments are sensitive to sequence and context, embodying the
sequential processing channel.

e The inverse increments, AC_i,k*{inverse}: For the same event e_k, we also compute
updates along complementary or "mirror" pathways. These are defined by an internal
mapping (e.g., activating counters associated with events that are statistically
anti-correlated with e_k). The inverse pathway is order-invariant and probes the
structural, relational space.
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These two increment vectors are stored for each step k. The underlying counters C_i are
updated only with the begin increments to maintain the system's state evolution.

Step 2: Computation of Stepwise Temporal and Spatial Squared Intervals

At each step k, we compute the squared temporal and spatial contributions using the recorded
increments.

e The squared temporal increment is defined as the sum of squares of the begin
increments. This quantifies the total "activity" or "surprise" magnitude induced by the
event along the sequential channel, consistent with the definition of AT? as a measure of
prediction error variance (Friston, 2010):

(1) AT_k> = Z_{i=1}{N} ( AC_{i,k}{begin} )>.

e The squared spatial increment is defined not from a single vector, but from the difference
between the begin and inverse increment vectors. This difference vector captures a pure
structural contrast, isolating the change in configuration that is invariant to the specific
event label and dependent only on the relational pattern. Its squared norm measures the
configuration shift:

(2) AS_K2 = =_{i=1}MN} ( AC_{i,k}{begin} — AC_{i,k}inverse} )2.

This formulation ensures that AS_k? is large when an event induces strongly divergent patterns
in the canonical and complementary networks, indicating a significant reconfiguration. If an
event affects both pathways identically, AS_k? = 0, implying no net structural change.

Step 3: Formation of the Ze Interval for a Single Step

Combining these according to the derived anticorrelation principle (Section 4), we form the
microscopic Ze interval for step k:

(3) As_k2 = AS_k?—y AT k2.

Here, y is a positive scaling parameter, which is the squared conversion factor ¢ in physical
terms (y = ¢2). In practice, y can be initialized as the ratio of the long-term variances, y = (AS_k?2
> | (AT _k?), calculated during a calibration phase, ensuring the two components are
dimensionally comparable and the interval is, on average, scale-invariant. This step embodies
the core result: the subtraction of the temporal from the spatial contribution.

Step 4: Windowing and Averaging to Obtain a Stable Metric

The quantity As _k? for a single event is highly noisy and corresponds to a microscopic
fluctuation. A stable, macroscopic metric interval ds? must be defined over a coarse-grained
history encompassing many events—akin to defining a path integral measure (Feynman &
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Hibbs, 1965). We therefore average As_k?® over a sufficiently large sliding window W of M
consecutive steps:

(4) ds?(W) = (1/M) =_{k € Window W} As_k? = (AS_k?)_W —y (AT_k2)_W.

This averaging procedure, standard in statistical physics for extracting emergent laws from
microscopic noise (Van Kampen, 1992), yields a robust value for the interval associated with the
macroscopic transition between the start and end of the window W. The window size M must be
large enough that the average converges but smaller than the scale over which the emergent
"spacetime" properties are expected to change.

Practical Outcome and Interpretation

Executing this algorithm on a sufficiently long and complex event stream produces a time series
of ds? values. The statistical distribution of these values reveals the emergent geometry:

e Histories where ds? > 0 dominate: The system's effective geometry is spacelike over that
interval, indicating configurations reachable by multiple histories.

e Histories where ds? < 0 dominate: The effective geometry is timelike, defining a preferred
causal sequence.

e The condition ds? = 0 defines the emergent light cone, separating possible causal
influences from impossible ones within the network dynamics.

This numerical recipe validates the theoretical derivation. It shows that a Lorentzian-signature
interval is not an input but a computable output from generic event processing with dual
(begin/inverse) pathways and a conservation constraint. The method is amenable to simulation
on synthetic data (e.g., Markov chains, symbolic sequences) or applied to real-world discrete
data streams in neuroscience or network theory, providing a novel tool for analyzing causal
structure.

Why Minkowski and Not Euclidean: The Origin of
Signature from Functional Asymmetry

A central and non-trivial result of the Ze dynamics framework is the emergence of a metric
interval with a Lorentzian (-, +, +, +) signature, as opposed to a Euclidean (+, +, +, +) one. This
is not a matter of arbitrary mathematical choice but a direct computational consequence of a
fundamental functional asymmetry in the dynamics. This section elucidates the precise
mechanism that selects the Minkowski signature, arguing that the minus sign is an indelible
signature of the opposing roles played by the two operational modes in the system’s state
evolution. It is a sign of physics, not philosophy.
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The Euclidean Temptation and Its Failure

At first glance, the mathematical structure of Ze dynamics seems to favor a Euclidean geometry.
The fundamental invariant is a sum of squares: | = Z (C_i)% In the bipartite model, this becomes
I =2 (S_i)* + Z (P_j)* If one were to naively interpret the contributions from the sequential
(temporal) counters and the parallel (spatial) counters as orthogonal components in a unified
geometry, the natural metric for measuring distances in this combined state space would be
Euclidean: A2 = AQ_T + AQ_S, where AQ_T and AQ_S are changes in the respective squared
sums.

Such a Euclidean metric would imply that temporal and spatial changes are independent and
additive, both contributing positively to a total "distance" between states. This is characteristic of
a system where all degrees of freedom are equivalent and contribute to a common,
minimization-driven equilibrium, as in the configuration space of classical mechanics or the
energy landscape of an Ising model (Goldenfeld, 1992). However, this contradicts the core
operational logic of Ze dynamics, where the two modes are not equivalent players in a static
landscape but antagonists in a dynamic process.

The Stabilization-Destabilization Duality

The decisive factor is the functional role of each mode, as derived from the system's need to
process information and maintain a non-equilibrium steady state. As established in Section 4,
the spatial (parallel) and temporal (sequential) channels are not symmetric.

Mode

Primary Function

Effect on System State

Sign of Contribution to State
“COSt"

Spatial (S)

Structural Configuration,

Ordering, Stabilization

Increases predictability,
reduces future surprise,
lowers free energy.

Positive (+) — Represents a gain in
structural order, a "credit."

Temporal (T) Sequential Novelty, Signals model Negative (-) — Represents a cost
Prediction Error, mismatch, drives incurred, a "debt" paid in surprise.
Destabilization learning, increases

immediate free energy.

This duality is not an abstract philosophical distinction but a structural feature of any adaptive
system that maintains an internal model. The spatial configuration (the internal model's state) is
the resource that allows for efficient, low-surprise operation. Building this configuration
(increasing AS?) is advantageous. Conversely, temporal prediction error (AT?) is the cost paid
when the current configuration is inadequate; it is the thermodynamic or informational price of
adaptation (Friston, 2010; Still, 2009).
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From Functional Roles to Metric Signature

The conservation of the global invariant | couples these opposing contributions. Since they
contribute with opposite signs to the system's "action" or "free energy," their combined effect in a
conserved quantity must be a difference, not a sum. This is a general principle in physics:
quantities that are conserved often arise from the balance of opposing terms (e.g., Lagrangian =
Kinetic Energy — Potential Energy).

Therefore, when constructing an interval that is invariant under the dynamics and meaningful for
characterizing histories, we must combine the squared measures as:

(1) AF =(+1)*AQ_S + (1) *n* AQ_T,

where n is a positive conversion factor. Mapping AQ_S o AS? and AQ_T o AT? leads directly
to:

(2) A% = a AS? — B AT?.

The negative sign in front of the temporal term is therefore computed, not chosen. It is the direct
mathematical encoding of the fact that temporal processing acts as a destabilizing cost center,
whereas spatial structuring acts as a stabilizing asset. A Euclidean sum (AS? + AT?) would
erroneously treat surprise (error) as a positive asset, which is operationally nonsensical for a
system seeking to minimize prediction error.

The Causal Consequence: Timelike vs. Spacelike Separation

This sign difference is what defines causal structure. In a Euclidean geometry (Af? = AS? + AT?),
all intervals are positive. There is no fundamental separation between paths; all states are, in
principle, directly connectable. In the Lorentzian geometry (As? = AS? — ¢*AT?), the sign of the
interval divides the space of possible histories into three distinct classes:

e Timelike (As? < 0): Dominated by temporal surprise. These histories define a unique,
directed causal order. They represent the inevitable "flow" of state updates driven by
sequential input.

e Spacelike (As? > 0): Dominated by spatial configuration change. These represent
correlations or connections that are not mediated by a direct sequence of surprise-driven
updates. They are accessible via multiple, equally probable histories.

e Lightlike (As? = 0): The boundary. These represent the maximum rate at which a stable
configuration can be updated by a sequence of surprises—the emergent "speed of
information" or causality c.

This causal structure is a necessary output of the functional asymmetry. A system that does not
distinguish between the cost of error and the gain of structure would have no light cone, no
invariant causal order, and thus no emergent notion of relativistic locality. The fact that Ze
dynamics, built on the simple principles of counting and conservation, yields this structure
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provides a compelling argument that the Minkowski metric is not a fundamental axiom of nature
but an effective, statistical description of the causal architecture of certain
information-processing systems (Fong et al., 2016; Rovelli, 1991).

Conclusion of the Argument

Therefore, the answer to "Why Minkowski and not Euclidean?" is grounded in dynamics. The
Euclidean metric describes a world of static configurations. The Minkowski metric describes a
world of processes, where the construction of order (space) is perpetually paid for by the
dissipation of surprise (time). The minus sign is the ledger of that transaction. In Ze dynamics,
this ledger is not postulated; it is kept by the counters and revealed in their statistics, forcing the
interval to be a difference, thereby crafting the very geometry of spacetime from the arithmetic of
events.

The Continuum Limit and Connection to Special
Relativity

The preceding sections demonstrated how a Lorentzian-signature interval emerges from the
discrete statistics of Ze dynamics. To solidify the connection with established physics, we must
now examine the continuum, steady-state behavior of the system and show how it recovers the
kinematic relations of Special Relativity (SR). This section illustrates that when the Ze system
operates in a stable, statistically regular regime, the effective "velocity" of configuration change
becomes bounded by the conversion constant ¢, and the light cone emerges as a stability
boundary within the counting process itself.

Steady-State Dynamics and the Emergent "Velocity"

Consider the Ze system operating over a macroscopic interval where its statistical properties are
stationary. In such a regime, we can define effective, coarse-grained variables. Let the
cumulative temporal measure be T, interpreted as the emergent proper time, and let the
cumulative spatial measure along a chosen axis be X. Their differentials, dT and dX, are
proportional to the root-mean-square of the microscopic AT and AS over a suitable averaging
scale (Van Kampen, 1992).

In a steady state, we expect a stable statistical relationship between spatial and temporal
increments. We define an emergent velocity v as the ratio of the rate of spatial configuration
change to the rate of temporal sequential change:

(1) v = dX/dT.

From the definitions in Section 5, dX o< V{(AS2) and dT o V{AT2) for a given averaging window.
Therefore, the squared velocity is proportional to the ratio of the expectations:

(2) v2 o< (AS?) | {AT?).

© Under CC BY-NC-ND 4.0 International License | Longevity Horizon, 2(4) 15


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://longevity.ge/index.php/longhoriz

This ratio is not free but is constrained by the dynamics. A system in a stable, non-equilibrium
steady state will exhibit a consistent relationship between the variance of its configuration
changes and the variance of its prediction errors.

The Interval in the Steady State and the Null Condition

Substituting the proportionality (AS?) o< v (AT?) into the definition of the Ze interval (Eq. 4,
Section 5) yields a crucial form. For a macroscopic evolution characterized by a constant v, the
averaged interval ds? becomes:

(3) ds? = (AS?) —y (AT?) =k {(AT?) (V2 —¢?),

where K is a positive proportionality constant, and we have identified y = ¢® from Section 4. This
equation is the bridge between the discrete counting framework and relativistic kinematics.

The null interval, ds? = 0, which defines the emergent light cone, now corresponds to a simple
condition on the statistical ratio:

(4)ds?=0 & 2=

This condition states that the light cone is not an abstract geometric postulate but the numerical
stability boundary of the Ze counting process. When v* — ¢?, the spatial stabilization rate
perfectly balances the temporal destabilization rate, scaled by the fundamental conversion
factor. Histories attempting to exceed this ratio (v > ¢?) would require {AS?) > ¢ (AT?). In the
Ze dynamics, this would statistically violate the conservation of the invariant | or the
stabilization-destabilization balance, making such histories exponentially suppressed in the path
ensemble—they become statistically impossible or unstable (Feynman & Hibbs, 1965). Thus, c?
emerges not merely as a conversion constant but as a maximum sustainable signal velocity
within the network, above which coherent state propagation breaks down.

Recovery of Relativistic Kinematics

From this foundation, the standard relations of SR follow naturally. First, the invariance of ds? for
different observers (here, different internal counting sequences or coarse-graining choices) is a
direct consequence of its definition as a statistical average over microscopic invariants (As_k?).
Different "observers" correspond to different ways of partitioning the event stream into
begin/inverse pathways or different choices of spatial axis counters, but the underlying
conservation law for | ensures the form of ds? remains covariant.

Second, time dilation and length contraction emerge from the conservation of the interval.
Consider two histories between the same starting and ending macroscopic configurations. One
history is at rest (v = 0, so ds? = — ¢ {AT_02)). Another history involves relative motion (v >0,
so ds? = {(AT_v?)(v? — ¢?)). Equating the intervals (as they connect the same boundary states)
gives:

(5) —¢2 (AT_0% = (AT_v2)(v* - c?).
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Solving for the ratio of the temporal measures (the accumulated proper times) yields:
(6) (AT_v2) / {AT_0% =1/ (1 - V3c>).

Taking square roots (and interpreting the square root of the mean-squared temporal measure as
the proper time), we obtain the familiar time dilation factor. A similar argument, holding the
proper time fixed, leads to length contraction. These are not independent postulates but
statistical necessities for the consistent matching of boundary conditions under the constraint of
a fixed ds2.

The Light Cone as a Phase Transition Boundary

The interpretation of the light cone as a stability threshold is profound. In the Ze framework, the
spacelike region (v < c¢) represents a phase of stable, correlated propagation where
configuration updates are causally linked to sequential processing. The "superluminal” region (v
> ¢) would represent a phase of unstable, decorrelated noise where structural changes occur
faster than the underlying sequential process can coherently support—analogous to a loss of
causal contact. The null cone v = c is the critical line separating these regimes. This view
resonates with approaches in condensed matter physics where emergent relativistic physics
and light cones arise near critical points in quantum systems (Calabrese & Cardy, 2006; Liberati,
2013).

Conclusion of the Derivation

Therefore, the full kinematic structure of Special Relativity is contained within the statistical limits
of Ze dynamics. The constant c is the ratio of fundamental scales in the spatial and temporal
counting lattices. The Minkowski interval is the statistically averaged, conserved quantity
governing coarse-grained histories. The light cone is the critical surface where the rate of
configuration change saturates the system's causal capacity. This provides a concrete,
bottom-up derivation of relativistic spacetime as an effective theory, arising from the
self-organizing statistics of a discrete, information-theoretic substrate.

Discussion: The Geometric Interpretation and
Implications

The derivation presented in this work culminates in a specific and consequential interpretation of
the nature of spacetime. We can now assert, based on the Ze dynamics model, that Minkowski
spacetime is an effective, statistical geometry arising from the balance between structural
stabilization and sequential novelty in a discrete, information-processing substrate. This
conclusion carries significant implications for our understanding of the foundations of physics,
shifting the ontological status of spacetime from a fundamental given to an emergent
phenomenon.
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Reinterpreting the Spacetime Continuum

The conventional framework of Special Relativity begins with the Minkowski metric as a
foundational postulate. Spacetime is treated as an a priori four-dimensional continuum endowed
with a fixed Lorentzian signature. Events are points in this continuum, and particles trace out
worldlines. While immensely successful, this approach leaves the origin of this specific
geometric structure unexplained.

The Ze dynamics framework inverts this logical hierarchy. Here, the primitive elements are not
points in a continuum but discrete events and the counting operations they trigger. The
continuum, along with its geometric properties, is a secondary, coarse-grained description.
Specifically:

e |tis not a postulate, but a derived consequence of statistical averaging.

e |tis not an a priori geometry, but an effective description of relational dynamics between
internal degrees of freedom.

e |t is not an abstract continuum, but a statistical limit of discrete counters (Nadal & Rau,
2020).

The coordinates t and x are not fundamental labels but emergent, macroscopic variables. They
are proportional to accumulated counts of two distinct types of operations: t to the
root-mean-square of sequential prediction errors (temporal novelty), and x to the
root-mean-square of structural reconfigurations (spatial ordering). The fabric of spacetime is, in
this view, woven from the ledger of these counts.

The Minus Sign as a Relational Indicator

The most distinctive feature of the Minkowski metric—the minus sign separating the temporal
and spatial components—receives a clear, non-mystical interpretation. It is the mathematical
signature of a fundamental relational opposition within the dynamics. The spatial term (+dx?)
quantifies the gain in structural stability and order. The temporal term (—c?dt?) quantifies the cost
paid in sequential surprise or prediction error required to achieve that order. The interval ds? is
thus a balance sheet. A negative interval (timelike separation) indicates a history where the cost
of surprise outweighs the gain in structure—a directed, causal sequence. A positive interval
(spacelike separation) indicates a history where structural correlations exist largely
independently of a specific costly sequence. This interpretation aligns with informational
approaches to physics, where energy and entropy play complementary roles (Friston, 2010;
Rovelli, 1991).

Connections to Quantum Gravity and Pre-Geometric Programs

This work situates itself within a broader research program seeking to derive spacetime and
gravity from more fundamental, non-geometric principles. The Ze dynamics approach shares
conceptual ground with several such approaches:
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1. Causal Set Theory: In Causal Set Theory, spacetime is approximated by a discrete,
partially ordered set of events, and the continuum metric is expected to emerge from the
counting of causal relations (Bombelli, Lee, Meyer, & Sorkin, 1987). Ze dynamics can be
viewed as providing a dynamical and statistical mechanism for such an emergence,
where the counters C_i encode coarser-grained causal information, and their
conservation law generates the metric.

2. Emergent Gravity/Entropic Gravity: Analogies exist with approaches where
gravitational dynamics is derived from thermodynamic or entropic considerations
(Verlinde, 2011). In Ze dynamics, the metric itself is an entropic object, derived from
counting micro-histories (ds® emerges from log N). The stabilization-destabilization
balance mirrors a thermodynamic free-energy principle, with ¢ acting as a critical
temperature.

3. Quantum Foundations: The bipartite structure of Ze dynamics (begin/inverse) and the
quadratic invariant are reminiscent of the structure of two-state systems and probability
conservation in quantum mechanics. This suggests a potential deeper link, where the
guantum mechanical phase and the spacetime metric might share a common origin in
the statistics of information processing (Fong et al., 2016; Singh, 2017).

Limitations and Future Directions

The current model is a simplified, proof-of-concept derivation. It recovers the kinematics of flat
(Minkowski) spacetime. The immediate challenge is the inclusion of dynamics—the emergence
of curvature and the Einstein field equations. A promising route is to consider the conversion
factor ¢ and the scaling constants a,  not as global constants, but as slowly varying functions of
the local statistical state of the Ze network. Inhomogeneities in the event stream or local
constraints on counter dynamics could then lead to an effective curved geometry, much like a
refractive index curves the path of light. The conservation equation for the invariant | would then
assume the role of a Bianchi identity.

Furthermore, the model's discrete nature naturally invites investigation into quantum effects.
Fluctuations in the counter increments below the coarse-graining scale could give rise to
stochastic deviations from classical geodesics, potentially modeling quantum particle behavior
or spacetime foam at the Planck scale.

We have presented a coherent framework in which the Minkowski metric, the cornerstone of
Special Relativity, emerges naturally from the non-equilibrium, stochastic dynamics of a system
with simple counting rules and a conservation law. The geometry of spacetime is revealed to be
a statistical description of the way a system balances the cost of processing new information
(time) against the benefit of building a stable internal model (space). The minus sign in the
metric is not a philosophical statement about the nature of time but a computational necessity
arising from this antagonistic relationship. This work provides a concrete, mechanistic model
that demystifies the origin of Lorentzian geometry and offers a novel, information-based
pathway toward unifying the foundations of physics.
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Conclusion

This work has presented a derivation of the Minkowski metric from first principles of a discrete,
stochastic dynamical system—Ze dynamics. The core achievement is the demonstration that
the fundamental geometry of spacetime, characterized by the invariant interval ds? = —c?dt? +
dx?, is not a necessary postulate of physics but a statistical, emergent property of an underlying
informational process. The derivation proceeds through several logically interlocked steps, each
replacing a traditional axiom with a computable, dynamical mechanism.

We began by defining the pre-geometric substrate: a system of counters C_i updated by a
stream of discrete events, governed by a statistically conserved quadratic invariant, | = £ C_i2
This invariant served as the foundational "seed" of geometry. The critical symmetry-breaking
step was the functional bifurcation of the dynamics into two operationally distinct modes. The
temporal component, T, was defined from the sum of squares of sequential, order-dependent
increments (AC_i"begin}), capturing the system’s accumulated prediction error or "surprise."
The spatial component, S, was defined from the sum of squares of structural, order-invariant
differences between canonical and complementary (inverse) update pathways (AC_i*begin} —
AC_iMinverse}), capturing net configuration change.

The oppositional relationship between these modes—where spatial stabilization is statistically
paid for by temporal destabilization, and vice-versa—led directly to the Lorentzian signature.
The conservation of | enforced an anticorrelation, dictating that their contributions combine as a
difference, yielding the emergent interval A¥ = aAS? — BAT? The minus sign was therefore
derived, not assumed. It is the indelible mathematical signature of the antagonistic roles these
processes play: one builds order (positive contribution), while the other reflects the cost of
building it (negative contribution). This functional interpretation demystifies the metric’s
signature, grounding it in system dynamics rather than abstract geometry (Friston, 2010).

The numerical recipe in Section 5 translated this theory into a concrete algorithm. By tracking
begin and inverse increments, computing stepwise variances, and averaging, one can directly
compute an interval ds? from any event stream. This practical methodology underscores the
framework’s falsifiability and provides a tool for analyzing causal structure in complex systems.

In the continuum, steady-state limit, this framework recovers the full kinematics of Special
Relativity. The conversion constant ¢ = sqrt(B/a) emerges as a fundamental scale relating the
lattice units of the temporal and spatial counting processes. Most significantly, the light
cone—the null surface where ds? = 0—arises not as a fundamental axiom of causality but as a
numerical stability threshold. It represents the maximum rate (v = ¢) at which coherent structural
information can propagate through the network relative to the underlying sequential processing
rate. Histories implying v > ¢ are exponentially suppressed in the statistical path integral, as they
would violate the system’s self-consistency conditions (Feynman & Hibbs, 1965). Thus, the
causal structure of relativity is revealed as a phase boundary in the space of dynamical histories
(Calabrese & Cardy, 2006).

The implications of this conclusion are profound for the foundations of physics:
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1. Spacetime is not fundamental. Minkowski spacetime is an effective, coarse-grained
description, a "thermodynamic" limit of discrete counting dynamics.

2. Space and time are not primitive dimensions. They are operational modes of
information processing: time as the monitoring of sequential novelty, space as the
mapping of structural relations.

3. Special Relativity is a limiting regime. The theory of Special Relativity is recovered as
the effective, continuum theory describing the stable, statistical equilibrium of a Ze-like
system. Its postulates are theorems within this more fundamental framework.

This work connects to broader research programs in emergent gravity, causal sets, and
quantum foundations (Bombelli et al., 1987; Fong et al., 2016; Rovelli, 1991). It provides a
specific, mechanistic model showing how Lorentz invariance and causal structure can naturally
crystallize from pre-geometric ingredients. Future work must explore the path to curvature and
gravitation—likely by allowing the "constants" a, B, and ¢ to become dynamical fields reflecting
local statistical states of the Ze network—and investigate potential quantum aspects arising
from microscopic fluctuations in the counter increments.

In summary, we have shown that the Minkowski metric, the stage upon which modern physics is
set, can be understood as a statistical invariant constructed from the simplest of operations:
counting, differentiating, and conserving. The geometry of our world may ultimately be an
arithmetic of events.
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