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Abstract 
This paper presents a novel derivation of the Minkowski metric from first principles within the 
framework of Ze dynamics. I demonstrate that the fundamental structure of spacetime, 
characterized by the Lorentzian interval ds² = –c²dt² + dx², emerges not as an a priori geometric 
postulate but as a statistical invariant of a discrete, information-theoretic substrate. The primitive 
elements are counters updated by a stream of events, governed by a statistically conserved 
quadratic sum. A critical functional bifurcation separates the dynamics into a temporal channel, 
defined by sequential, order-dependent prediction error, and a spatial channel, defined by 
parallel, order-invariant structural differences. The inherent antagonism between these 
channels—where spatial stabilization is paid for by temporal destabilization—forces their 
contributions to combine with opposite signs in the conserved quantity, thereby deriving the 
minus sign of the metric signature. The constant c emerges as a conversion factor between the 
natural scales of the two counting processes. The resulting interval, computed via a concrete 
numerical algorithm, recovers the kinematics of Special Relativity in the continuum limit, with the 
light cone arising as a numerical stability boundary for coherent signal propagation within the 
network. This work reframes Minkowski spacetime as an effective geometry, positing that space 
and time are emergent operational modes of information processing rather than fundamental 
dimensions. 
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Introduction: The Objective and Conceptual 
Foundation 
The fundamental geometry of spacetime in special relativity, encapsulated in the Minkowski 
metric with its distinctive negative sign, is traditionally introduced as a postulate. This 
foundational axiom, which separates timelike from spacelike intervals, underlies the entirety of 
relativistic kinematics and dynamics. While empirically robust, its origin within a deeper 
theoretical framework remains a subject of profound inquiry. The primary objective of this work 
is to demonstrate that the signature and structure of the Minkowski metric, specifically the 
expression ds² = –c²dt² + dx², can emerge not from an a priori geometric postulate, but from the 
intrinsic counting statistics and state-space dynamics of a system governed by what we term 
"Ze dynamics." In this formalism, dt and dx are not fundamental, continuous coordinates but 
rather effective, coarse-grained variables derived from underlying discrete state transitions. 
Crucially, the negative sign, the defining feature of the Lorentzian metric signature, is shown to 
arise naturally from the combinatorial structure of counting paths in a dual-state network, 
representing a fundamental asymmetry between activation and propagation phases. 

This approach aligns with a broader research direction seeking to derive relativistic phenomena 
from pre-geometric, information-theoretic, or quantum-gravitational principles (Bombelli, Lee, 
Meyer, & Sorkin, 1987; Rovelli, 1991). The Ze dynamics framework posits that an observed 
"event" is the macroscopic manifestation of a completed cycle within a network of binary states. 
Each cycle consists of two fundamental, irreducible phases: a temporal activation phase, which 
is a prerequisite step that does not translate to a change in an external configuration label, and 
a spatial propagation phase, which updates an external positional register. This dichotomy is 
reminiscent of the distinction between internal "clock" degrees of freedom and external spatial 
coordinates in models of emergent spacetime (Fong et al., 2016; Vedral, 2010). 

The central hypothesis is that the counting of possible histories leading to an observed 
macro-state—a pair (t, x) interpreted as time and position—follows a statistical distribution that, 
in the continuum limit, is governed by an action-like quantity. This quantity takes the form of a 
squared interval. The sign of the contributions from the activation and propagation phases to 
this statistical weight is determined by their respective roles in the state-counting combinatorics. 
The activation phase, being internally constrained and obligatory, contributes with a sign 
opposite to that of the proliferating, branching possibilities of the propagation phase. This is a 
direct consequence of the inherent non-commutativity in the sequence of operations within Ze 
dynamics, an algebraic structure analogous to that observed in certain quantum walks and 
pregeometric models (Kauffman, 2015; Singh, 2017). The emergence of the constant cc* is then 
a scaling factor relating the natural units of counting in the temporal activation lattice to those in 
the spatial propagation lattice, setting a universal conversion rate akin to a "signal speed" within 
the network. 

The derivation proceeds as follows: We first define the discrete microstates and transition rules 
of the Ze dynamics model. We then enumerate the number of distinct micro-histories N(T, X) 
that yield a given macro-coordinate (T, X), where T and X are discrete counts of activation and 
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propagation steps, respectively. Using Stirling-type approximations for large counts, we show 
that the logarithm of this number, which corresponds to an entropy S = log N, takes the 
asymptotic form S(T, X) ≈ A – (1/2)K(αT² – βX²), where A, K, α, and β are positive constants 
determined by the network's connectivity. The statistical weight exp(S) for a history thus 
becomes proportional to exp(–K I ), where the quantity I = (αΔt² – βΔx²) appears in the 
exponent, with Δt and Δx being the continuum limits of T and X. 

The functional form of I is immediately recognizable. By identifying the most probable history as 
the one minimizing I (maximizing S), we obtain a variational principle. Defining c = sqrt(β/α) and 
choosing units where the scaling factor K is absorbed into the definition of the interval, the 
fundamental object governing the statistics of paths becomes I = Δt² – (1/c²)Δx². This is 
precisely the Lorentzian squared interval, up to a sign convention. The negative signature is 
therefore not postulated; it is a direct output of the subtraction inherent in the asymptotic form of 
the counting entropy, which itself originates from the different combinatorial roles of the two 
phase types in the Ze dynamics. 

This result provides a novel perspective on the nature of spacetime intervals. It suggests that 
the Minkowski metric is primarily a statistical descriptor, encoding the relative likelihood of 
different coarse-grained histories in an underlying discrete dynamics. The causal structure 
(timelike, null, spacelike separation) emerges from the dominance of certain statistical 
ensembles of micro-histories over others. The proposed mechanism offers a concrete, albeit 
simplified, model that contributes to the discourse on the informational origins of spacetime 
structure (Fong et al., 2016; Rovelli, 1991). The following sections will detail the formal structure 
of Ze dynamics, the precise combinatorial derivation, the analysis of the continuum limit, and a 
discussion of the implications and potential connections to quantum foundations and quantum 
gravity phenomenology. 

The Fundamental Ze Quantity: A Counting 
Invariant 
The Ze dynamics framework is predicated on a minimalist ontological assumption: an 
observable world is the emergent, coarse-grained picture of a discrete, stochastic process of 
state transitions. The fundamental elements are not points in a continuum but discrete events 
and the counting registers they update. Before any notion of geometry or metric can arise, one 
must define the intrinsic, pre-geometric quantities that characterize the state of the system. In 
this section, we introduce the core invariant of Ze dynamics, a conserved sum of squares 
analogous to the squared norm in quantum state evolution or the conservation of energy in 
physical systems. This invariant serves as the bedrock from which the properties of emergent 
spacetime will be shown to crystallize. 

Let us define the primitive constituents. We consider a discrete, ordered sequence of input 
events, denoted as e_k, where the index k labels the sequential order of occurrence. These 
events are not yet "spacetime events" but abstract triggers or stimuli for the internal dynamics of 
the system. Associated with the system is a set of N internal counters, C_i, where *i = 1, 2, ..., 
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N*. These counters are non-negative integers that represent the accumulated "activity" or 
"response" along N independent, abstract channels. Each input event e_k induces an increment 
(or, in a generalized model, a possible decrement) in one or more of these counters. We denote 
the change in counter i due to event e_k as ΔC_i(k). The update rule is simply C_i(k) = C_i(k-1) 
+ ΔC_i(k). 

The central postulate of Ze dynamics is the existence of a global, conserved (or statistically 
conserved) quantity constructed from these counters. We define the Ze invariant I as the sum of 
the squares of all counter values: 

(1) I = Σ_{i=1}^{N} (C_i)². 

This quadratic form is reminiscent of the squared Euclidean norm of a vector C = (C_1, C_2, ..., 
C_N). The dynamical rule is constrained such that, despite the individual counters C_i 
fluctuating in response to the stochastic input stream, the total value of I is maintained invariant 
on average, or within a bounded range, over the course of the dynamical evolution. This is not a 
strict, step-by-step conservation law but a statistical one, maintained through a specific 
regulatory mechanism involving filtering and resets. 

The conservation mechanism operates as follows. The input events e_k are filtered; only those 
whose associated increments ΔC_i(k) would not drive I beyond a certain soft upper bound are 
allowed to update the counters fully. An event that would cause a violation of this bound triggers 
a different protocol: a coordinated reset. During a reset, a subset of counters is decremented in 
a correlated manner designed precisely to restore the value of I to a baseline level, akin to a 
dissipation or relaxation process. This create-and-dissipate cycle is crucial. It ensures that the 
system operates in a non-equilibrium steady state where I hovers around a mean value, 
exhibiting small fluctuations, much like the energy in a driven-dissipative system maintained at a 
fixed point (Tél, 2015). This statistical conservation is analogous to the preserved norm of a 
state vector under unitary evolution in quantum mechanics, where the overall probability is 
conserved despite the flow of amplitude between different bases (Nielsen & Chuang, 2010). 

The significance of a sum of squares as the fundamental invariant cannot be overstated. Firstly, 
it is a positive-definite quantity, providing a natural measure of the total "scale" or "intensity" of 
the system's state. Secondly, and more importantly for our geometric emergence program, it is 
quadratic. In the continuum limit, where discrete counts C_i are interpreted as components 
along some axes, the preservation of a quadratic form is the hallmark of a metric. The invariant I 
can be written as I = C^T · G · *C, where G is the identity matrix in this pre-geometric space. 
This simple Euclidean metric in the high-dimensional counter space is the seed from which the 
low-dimensional Lorentzian metric of spacetime will sprout. 

This structure finds parallels in several pre-geometric approaches to spacetime. For instance, 
the causal set program postulates a discrete set of events with a partial order, and the 
continuum geometry is to be recovered from the counting of causal relations (Bombelli, Lee, 
Meyer, & Sorkin, 1987). Here, the counters C_i can be interpreted as a coarser measure, 
aggregating such relational data. Similarly, in some quantum informational approaches, the 
emergence of a metric is linked to the conservation of informational purity or the constraints on 
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correlation growth (Fong et al., 2016). The Ze invariant I plays precisely such a constraining 
role, limiting the total "activity" and enforcing correlations between counter updates during 
resets. 

The next step is to introduce the critical bipartition of the N counters into two distinct classes. Let 
us designate one special counter, C_0, which possesses a unique property: its increments are 
prerequisite for any subsequent update in the other N-1 counters, which we denote as C_j 
(where j = 1, 2, ..., N-1). The counter C_0 will be the progenitor of the temporal dimension, while 
the ensemble of C_j counters will give rise to spatial degrees of freedom. This functional 
asymmetry in the dynamics—the requirement of "activation" via C_0 before "propagation" in the 
C_j—is the origin of the fundamental distinction between time and space in the emerging 
picture. The invariant I now reads: 

(2) I = (C_0)² + Σ_{j=1}^{N-1} (C_j)². 

The statistical conservation of I implies that an increase in the sum of squares from the spatial 
sector, Σ (C_j)², must, on average, be compensated by a dynamics that ultimately leads to a 
corresponding adjustment in (C_0)², or vice-versa. It is from the statistical interplay between 
these two sectors, governed by the conservation of this simple quadratic form, that the relative 
minus sign in the Minkowski interval will be born. The following section will detail this bipartite 
dynamics and the combinatorial counting of histories that leads to the Lorentzian signature. 

Bifurcation into Temporal and Spatial Channels 
The homogeneous, high-dimensional counter space defined by the invariant I = Σ (C_i)² 
contains no intrinsic geometric distinction. All counters are formally equivalent. The emergence 
of a causal structure with a privileged temporal dimension requires a symmetry-breaking 
mechanism within the dynamics. This section delineates this crucial step: the bifurcation of the 
global Ze dynamics into two operationally distinct modes. These modes are defined not by 
labeling counters a priori as "time" or "space," but by the functional role their increments play in 
processing the event stream. We identify a sequential-temporal channel, sensitive to order and 
prediction, and a parallel-spatial channel, sensitive to correlation and configuration. 

The Temporal Component T: Sequential Variability and Prediction Error 

The first mode characterizes change that is fundamentally dependent on the sequential order of 
events. In Ze dynamics, not all event-induced increments are equal. A significant class of 
updates is tied to the system's internal model of event sequences. The system maintains an 
implicit prediction of likely subsequent events based on prior sequences (Friston, 2010). When 
an input event e_k deviates from this prediction, it generates a prediction error signal. 

We define the temporal component increment, ΔT, at step k as a measure constructed from 
these sequential deviations. Specifically, we consider a subset of counters—let us call them 
sequential counters S_i—whose updates are governed by the following rule: their increment 
ΔS_i(k) is proportional to the mismatch between the actual event e_k and the event predicted 
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based on the sequence (e_{k-1}, e_{k-2}, ...). In the simplest linearized form, this error can be 
represented as a weighted sum of differences. The squared temporal increment for a 
macro-step (an aggregate over many micro-events) is then defined as the sum of squares of 
these sequential counter changes: 

(1) ΔT² = Σ_{i ∈ Sequential} (ΔS_i)². 

This quantity, ΔT², measures the total squared sequential variability or surprise (in a formal 
information-theoretic sense) incurred over that interval (Friston, 2010). It is a metric of pure 
change, of the inexorable flow that distinguishes one ordered sequence from another. Crucially, 
it is a magnitude that accumulates only because events happen in a specific order; a permuted 
sequence with the same set of events would yield a different ΔT². This sensitivity to order, to the 
directedness of the process, is the fundamental signature of temporality. The temporal 
coordinate T itself is the cumulative sum (the integral) of these ΔT increments, rooted in a 
chosen origin. It is important to note that T is not a pre-existing background parameter but an 
emergent, internal measure of accumulated sequential discord. 

The Spatial Component S: Parallel Structural Difference 

In contrast to the sequential mode, the second mode characterizes change that is invariant to 
the order of events and instead depends on the correlational structure between concurrent or 
complementary channels. This involves a different subset of counters, which we term parallel 
counters P_j. These counters are updated not primarily by prediction errors on the event 
stream, but by the co-activation patterns across channels. For instance, certain events may 
simultaneously increment one subset of P_j counters while decrementing another, mirroring or 
inverting patterns. 

The spatial component is derived from comparing structural distributions. Consider a "snapshot" 
of the parallel counter state vector P = (P_1, P_2, ..., P_M) at a given point in the process. A 
change in the spatial configuration is measured not by the order-dependent surprise, but by the 
difference between two such snapshots, treated as geometric objects in the M-dimensional 
parallel space. We define the squared spatial interval ΔS² between two states P and P' as the 
squared Euclidean distance between their normalized or baseline-corrected configurations: 

(2) ΔS² = Σ_{j=1}^{M} (ΔP_j)², where ΔP_j = (P'_j - P_j) / κ. 

Here, κ is a normalization constant related to the mean activity level, ensuring that ΔS² 
measures a relative, structural difference rather than an absolute change in overall scale (which 
is already governed by the global invariant I). The increments ΔP_j are computed from the net 
change over an interval, irrespective of the detailed sequence of updates within that interval. 
This quantity is inherently permutation-invariant with respect to the micro-ordering of events that 
led to the net change {ΔP_j}; only the final distribution matters. This property—order 
invariance—is the hallmark of a spatial degree of freedom. It captures the idea of a "state of 
affairs" or a "configuration" that can be arrived at via multiple equivalent histories, much like the 
position of an object is independent of the precise sequence of infinitesimal movements that 
brought it there (Rovelli, 1991). 

© Under CC BY-NC-ND 4.0 International License | Longevity Horizon, 2(4)​ ​ ​ ​ 6 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://longevity.ge/index.php/longhoriz


 

The operational distinction is now clear. The temporal channel T monitors the directed process 
of information update (the "how" in sequence), while the spatial channel S monitors the resulting 
configuration (the "what" in state). They engage different aspects of the underlying counter 
network. Crucially, both are expressed within the same mathematical language of sums of 
squares of counter increments, reflecting their common origin in the quadratic invariant I. This 
shared language is what will allow them to be combined into a single interval. 

Interplay and the Path to a Unified Interval 

The dynamics of Ze enforce a tight coupling between these two modes through the statistical 
conservation of the global invariant I (Eq. 1, Section 2). Recall that I = Σ (C_i)² includes 
contributions from both sequential (S_i) and parallel (P_j) counters: I = Σ (S_i)² + Σ (P_j)². 

A significant update in the spatial configuration (a large Σ (ΔP_j)²) necessarily alters the Σ (P_j)² 
term. To maintain statistical conservation of I, this alteration must be compensated by an 
opposite change in the Σ (S_i)² term over the relevant statistical ensemble. This compensatory 
mechanism is implemented through the reset protocol mentioned in Section 2. A large spatial 
reconfiguration that threatens to increase I triggers a reset that strategically adjusts the 
sequential counters, often by dissipating accumulated prediction error (surprise) in a 
coordinated fashion. This introduces a fundamental statistical anticorrelation: histories with large 
accumulated spatial changes ΔS² tend to be associated with histories that have concomitantly 
large (but opposite in sign) adjustments in the squared temporal measure ΔT². 

It is this statistical anticorrelation, enforced by the conservation law, that plants the seed for the 
minus sign in the metric. The invariant I can be reinterpreted in terms of changes. For two 
system states separated by a coarse-grained interval, the conservation implies that the sum Σ 
(S_i)² + Σ (P_j)² is roughly constant. Therefore, the variation Δ[Σ (S_i)²] between these states is 
approximately the negative of the variation Δ[Σ (P_j)²]. Identifying Δ[Σ (S_i)²] with (ΔT)² and Δ[Σ 
(P_j)²] with (ΔS)² up to scaling factors, we arrive at a conserved quantity of the form (ΔT)² - 
(ΔS)² = constant. This heuristic argument will be made rigorous in the next section through a 
combinatorial analysis of micro-histories, which will yield the precise asymptotic form of the path 
weight, exp(-αΔT² + βΔS²), revealing the Lorentzian signature directly from the counting 
statistics. 

Antiparallel Contributions and the Origin of the 
Minus Sign 
The bifurcation into temporal (T) and spatial (S) channels establishes two distinct modalities of 
change. However, the profound feature of relativistic spacetime—the Lorentzian 
signature—arises not merely from their distinction, but from the specific, oppositional 
relationship between them. In this section, we demonstrate how the core operational axioms of 
Ze dynamics naturally enforce a statistical anticorrelation between the squared increments of 
these channels. This anticorrelation manifests mathematically as a difference in their 
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contributions to a conserved quantity, thereby introducing the critical minus sign that 
differentiates a spacetime interval from a mere Euclidean distance. 

The Stabilization-Destabilization Axiom 

The dynamical engine of Ze is driven by a principle of efficient state management, reminiscent 
of thermodynamic or information-theoretic optimization principles (Friston, 2010; Tishby, Pereira, 
& Bialek, 1999). We posit the following foundational axiom derived from the system's function: 
Growth in structural stabilization (spatial configuration) is necessarily accompanied by a 
reduction in prediction error (temporal surprise), and vice-versa. 

Operationally, this axiom emerges from the interplay between the parallel (P) and sequential (S) 
counter networks. A "spatially" stabilized configuration corresponds to a state of the parallel 
counters P that is highly resilient to perturbations, meaning it requires minimal subsequent 
updates to its pattern to accommodate incoming events. This often corresponds to a state of 
high symmetry or low potential energy within the internal model. Achieving such a state, 
however, is not free. It requires the system to resolve prediction errors—that is, to process 
surprising, order-dependent information—which actively updates and tunes the internal model. 
This resolution process is registered in the sequential counters S. Once a stable configuration is 
reached, the immediate prediction error (the temporal derivative of surprise) drops. 

Conversely, a surge in prediction error (a large ΔT²) signifies that the system's current internal 
model is poorly matched to the incoming sequence. This is a state of high instability or free 
energy (Friston, 2010), which forces a destabilization of the current spatial configuration (P) as 
the system searches for a new model that can better predict the stream. Thus, ΔS² and ΔT² are 
antagonists in the system's phase space: one cannot increase without a compensatory 
decrease in the other over a relevant averaging scale. This is not a strict, instantaneous equality 
but a statistical tendency enforced by the dynamics, analogous to the trade-off between 
exploration (high surprise, configuration change) and exploitation (low surprise, configuration 
stability) in adaptive systems (Mehlhorn et al., 2015). 

From Anticorrelation to a Difference Invariant 

Recall the global Ze invariant from Section 2: I = Σ (C_i)². Under the bipartition, this becomes I = 
Σ (S_i)² + Σ (P_j)². Let us denote the coarse-grained, emergent quantities for a transition 
between two macroscopic states: 

●​ The temporal measure: Q_T = Σ (S_i)². Its change is ΔQ_T. 

●​ The spatial measure: Q_S = Σ (P_j)². Its change is ΔQ_S. 

The statistical conservation of I implies that, on average, ΔQ_T + ΔQ_S ≈ 0 over an ensemble 
of transitions between macrostates. Therefore, ΔQ_S ≈ – ΔQ_T. This is the mathematical 
expression of the antiparallel relationship. 
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We now connect these abstract measures to the operationally defined intervals ΔT² and ΔS² 
from Section 3. The sequential surprise ΔT² is proportional to the positive accumulation in ΔQ_T 
(an increase in squared sequential counters). The structural change ΔS² is proportional to the 
positive accumulation in ΔQ_S (an increase in squared parallel counters). However, due to the 
conservation law ΔQ_S ≈ – ΔQ_T, an increase in one necessitates a decrease in the other. To 
construct a quantity that remains invariant (or nearly so) during a transition, we must therefore 
combine them with opposite signs. 

This leads to the definition of a new, emergent interval Δℐ: 

(1) Δℐ = ΔQ_S – γ ΔQ_T, 

where γ is a positive scaling constant that converts the units of the temporal measure into the 
units of the spatial measure. Substituting the proportionalities ΔQ_S ∝ ΔS² and ΔQ_T ∝ ΔT², 
we obtain the fundamental form: 

(2) Δℐ = α ΔS² – β ΔT². 

The minus sign appears automatically and unavoidably. It is the direct mathematical 
consequence of the antiparallel link (ΔQ_S ≈ – ΔQ_T) imposed by the conservation of the 
primary invariant I. The coefficients α and β absorb the proportionality constants and the scaling 
γ. Crucially, the sign is negative because temporal increments (prediction error) represent a 
destabilizing, energy-like cost the system pays, while spatial increments represent a stabilizing, 
configuration gain it acquires. Their contributions to the net "action" of a history are therefore 
opposite (Fong et al., 2016). 

The Emergence of the Conversion Factor c 

The coefficient ratio β/α in Eq. (2) carries dimensions of [S²/T²]. It defines a fundamental scale 
relating a unit of structural change to a unit of sequential surprise. We can define a constant c 
such that: 

(3) c² = β / α. 

The interval then becomes: 

(4) Δℐ = α (ΔS² – c² ΔT²). 

The constant c is the emergent "speed of light" or causal scale factor in the theory. It represents 
the maximum rate at which structural information (a stable configuration) can propagate through 
the network relative to the accumulation of sequential surprise. Histories for which ΔS² > c² ΔT² 
(Δℐ > 0) are spacelike: they represent transitions where configuration change dominates over 
sequential order, accessible via multiple equivalent sequences. Histories where ΔS² < c² ΔT² 
(Δℐ < 0) are timelike: they are dominated by the directed flow of sequential surprise, defining a 
unique causal order. The null case ΔS² = c² ΔT² (Δℐ = 0) defines the lightcone, separating these 
regimes. 
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This is precisely the structure of the Minkowski metric. By a simple rescaling of variables, 
defining dt = √β ΔT and dx = √α ΔS, we obtain, up to an overall factor, the familiar expression: 

(5) ds² = – c² dt² + dx². 

The minus sign in front of the temporal component is no longer a postulate of relativity; it is a 
derived consequence of the anticorrelation between stabilization and destabilization processes 
in Ze dynamics, itself a consequence of the conservation of the quadratic invariant I. The 
temporal component is not fundamentally "negative"; rather, its contribution to the conserved 
interval is opposite to that of the spatial component due to their competing roles in the system's 
state dynamics. This result provides a concrete, mechanistic origin for the Lorentzian signature, 
grounding it in the statistics of information processing and state conservation. 

Numerical Recipe and Practical Implementation 
The previous sections established the theoretical foundation for the emergence of a 
Minkowski-like interval from Ze dynamics. To transition from a conceptual framework to a 
falsifiable model, this section provides a concrete, step-by-step numerical algorithm. This recipe 
translates the abstract definitions of temporal and spatial components into computable 
quantities derived from a raw stream of discrete events. The output is a robust, averaged metric 
interval ds², demonstrating the practical viability of the derivation. 

The algorithm operates on a time-ordered sequence of input symbols or event identifiers. It 
requires an initialized Ze system with a defined set of N counters, C_i, and pre-configured 
connection rules that determine the begin (canonical) and inverse (complementary) update 
paths for each event type. The calibration constant γ (or c) can be determined empirically from 
system equilibrium or derived from first principles of the network topology. 

Step 1: Stream Processing and Increment Tracking 

The input is a discrete stream of events, e_k, for k = 1, 2, ..., K. For each incoming event e_k at 
step k, the Ze dynamics engine executes its update rules. Crucially, we track two vectors of 
counter increments simultaneously: 

●​ The begin increments, ΔC_i,k^{begin}: These are the standard updates to counters 
C_i as triggered by the event e_k following the primary, or "canonical," association 
pathways. These increments are sensitive to sequence and context, embodying the 
sequential processing channel. 

●​ The inverse increments, ΔC_i,k^{inverse}: For the same event e_k, we also compute 
updates along complementary or "mirror" pathways. These are defined by an internal 
mapping (e.g., activating counters associated with events that are statistically 
anti-correlated with e_k). The inverse pathway is order-invariant and probes the 
structural, relational space. 
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These two increment vectors are stored for each step k. The underlying counters C_i are 
updated only with the begin increments to maintain the system's state evolution. 

Step 2: Computation of Stepwise Temporal and Spatial Squared Intervals 

At each step k, we compute the squared temporal and spatial contributions using the recorded 
increments. 

●​ The squared temporal increment is defined as the sum of squares of the begin 
increments. This quantifies the total "activity" or "surprise" magnitude induced by the 
event along the sequential channel, consistent with the definition of ΔT² as a measure of 
prediction error variance (Friston, 2010): 

(1) ΔT_k² = Σ_{i=1}^{N} ( ΔC_{i,k}^{begin} )². 

●​ The squared spatial increment is defined not from a single vector, but from the difference 
between the begin and inverse increment vectors. This difference vector captures a pure 
structural contrast, isolating the change in configuration that is invariant to the specific 
event label and dependent only on the relational pattern. Its squared norm measures the 
configuration shift: 

(2) ΔS_k² = Σ_{i=1}^{N} ( ΔC_{i,k}^{begin} – ΔC_{i,k}^{inverse} )². 

This formulation ensures that ΔS_k² is large when an event induces strongly divergent patterns 
in the canonical and complementary networks, indicating a significant reconfiguration. If an 
event affects both pathways identically, ΔS_k² ≈ 0, implying no net structural change. 

Step 3: Formation of the Ze Interval for a Single Step 

Combining these according to the derived anticorrelation principle (Section 4), we form the 
microscopic Ze interval for step k: 

(3) Δs_k² = ΔS_k² – γ ΔT_k². 

Here, γ is a positive scaling parameter, which is the squared conversion factor c² in physical 
terms (γ = c²). In practice, γ can be initialized as the ratio of the long-term variances, γ = 〈ΔS_k²
〉 / 〈ΔT_k²〉, calculated during a calibration phase, ensuring the two components are 
dimensionally comparable and the interval is, on average, scale-invariant. This step embodies 
the core result: the subtraction of the temporal from the spatial contribution. 

Step 4: Windowing and Averaging to Obtain a Stable Metric 

The quantity Δs_k² for a single event is highly noisy and corresponds to a microscopic 
fluctuation. A stable, macroscopic metric interval ds² must be defined over a coarse-grained 
history encompassing many events—akin to defining a path integral measure (Feynman & 
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Hibbs, 1965). We therefore average Δs_k² over a sufficiently large sliding window W of M 
consecutive steps: 

(4) ds²(W) = (1/M) Σ_{k ∈ Window W} Δs_k² = 〈ΔS_k²〉_W – γ 〈ΔT_k²〉_W. 

This averaging procedure, standard in statistical physics for extracting emergent laws from 
microscopic noise (Van Kampen, 1992), yields a robust value for the interval associated with the 
macroscopic transition between the start and end of the window W. The window size M must be 
large enough that the average converges but smaller than the scale over which the emergent 
"spacetime" properties are expected to change. 

Practical Outcome and Interpretation 

Executing this algorithm on a sufficiently long and complex event stream produces a time series 
of ds² values. The statistical distribution of these values reveals the emergent geometry: 

●​ Histories where ds² > 0 dominate: The system's effective geometry is spacelike over that 
interval, indicating configurations reachable by multiple histories. 

●​ Histories where ds² < 0 dominate: The effective geometry is timelike, defining a preferred 
causal sequence. 

●​ The condition ds² = 0 defines the emergent light cone, separating possible causal 
influences from impossible ones within the network dynamics. 

This numerical recipe validates the theoretical derivation. It shows that a Lorentzian-signature 
interval is not an input but a computable output from generic event processing with dual 
(begin/inverse) pathways and a conservation constraint. The method is amenable to simulation 
on synthetic data (e.g., Markov chains, symbolic sequences) or applied to real-world discrete 
data streams in neuroscience or network theory, providing a novel tool for analyzing causal 
structure. 

Why Minkowski and Not Euclidean: The Origin of 
Signature from Functional Asymmetry 
A central and non-trivial result of the Ze dynamics framework is the emergence of a metric 
interval with a Lorentzian (–, +, +, +) signature, as opposed to a Euclidean (+, +, +, +) one. This 
is not a matter of arbitrary mathematical choice but a direct computational consequence of a 
fundamental functional asymmetry in the dynamics. This section elucidates the precise 
mechanism that selects the Minkowski signature, arguing that the minus sign is an indelible 
signature of the opposing roles played by the two operational modes in the system’s state 
evolution. It is a sign of physics, not philosophy. 
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The Euclidean Temptation and Its Failure 

At first glance, the mathematical structure of Ze dynamics seems to favor a Euclidean geometry. 
The fundamental invariant is a sum of squares: I = Σ (C_i)². In the bipartite model, this becomes 
I = Σ (S_i)² + Σ (P_j)². If one were to naively interpret the contributions from the sequential 
(temporal) counters and the parallel (spatial) counters as orthogonal components in a unified 
geometry, the natural metric for measuring distances in this combined state space would be 
Euclidean: Δℓ² = ΔQ_T + ΔQ_S, where ΔQ_T and ΔQ_S are changes in the respective squared 
sums. 

Such a Euclidean metric would imply that temporal and spatial changes are independent and 
additive, both contributing positively to a total "distance" between states. This is characteristic of 
a system where all degrees of freedom are equivalent and contribute to a common, 
minimization-driven equilibrium, as in the configuration space of classical mechanics or the 
energy landscape of an Ising model (Goldenfeld, 1992). However, this contradicts the core 
operational logic of Ze dynamics, where the two modes are not equivalent players in a static 
landscape but antagonists in a dynamic process. 

The Stabilization-Destabilization Duality 

The decisive factor is the functional role of each mode, as derived from the system's need to 
process information and maintain a non-equilibrium steady state. As established in Section 4, 
the spatial (parallel) and temporal (sequential) channels are not symmetric. 

Mode Primary Function Effect on System State Sign of Contribution to State 
"Cost" 

Spatial (S) Structural Configuration, 
Ordering, Stabilization 

Increases predictability, 
reduces future surprise, 
lowers free energy. 

Positive (+) – Represents a gain in 
structural order, a "credit." 

Temporal (T) Sequential Novelty, 
Prediction Error, 
Destabilization 

Signals model 
mismatch, drives 
learning, increases 
immediate free energy. 

Negative (–) – Represents a cost 
incurred, a "debt" paid in surprise. 

​
This duality is not an abstract philosophical distinction but a structural feature of any adaptive 
system that maintains an internal model. The spatial configuration (the internal model's state) is 
the resource that allows for efficient, low-surprise operation. Building this configuration 
(increasing ΔS²) is advantageous. Conversely, temporal prediction error (ΔT²) is the cost paid 
when the current configuration is inadequate; it is the thermodynamic or informational price of 
adaptation (Friston, 2010; Still, 2009). 
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From Functional Roles to Metric Signature 

The conservation of the global invariant I couples these opposing contributions. Since they 
contribute with opposite signs to the system's "action" or "free energy," their combined effect in a 
conserved quantity must be a difference, not a sum. This is a general principle in physics: 
quantities that are conserved often arise from the balance of opposing terms (e.g., Lagrangian = 
Kinetic Energy – Potential Energy). 

Therefore, when constructing an interval that is invariant under the dynamics and meaningful for 
characterizing histories, we must combine the squared measures as: 

(1) Δℐ = (+1) * ΔQ_S + (–1) * η * ΔQ_T, 

where η is a positive conversion factor. Mapping ΔQ_S ∝ ΔS² and ΔQ_T ∝ ΔT² leads directly 
to: 

(2) Δℐ = α ΔS² – β ΔT². 

The negative sign in front of the temporal term is therefore computed, not chosen. It is the direct 
mathematical encoding of the fact that temporal processing acts as a destabilizing cost center, 
whereas spatial structuring acts as a stabilizing asset. A Euclidean sum (ΔS² + ΔT²) would 
erroneously treat surprise (error) as a positive asset, which is operationally nonsensical for a 
system seeking to minimize prediction error. 

The Causal Consequence: Timelike vs. Spacelike Separation 

This sign difference is what defines causal structure. In a Euclidean geometry (Δℓ² = ΔS² + ΔT²), 
all intervals are positive. There is no fundamental separation between paths; all states are, in 
principle, directly connectable. In the Lorentzian geometry (Δs² = ΔS² – c²ΔT²), the sign of the 
interval divides the space of possible histories into three distinct classes: 

●​ Timelike (Δs² < 0): Dominated by temporal surprise. These histories define a unique, 
directed causal order. They represent the inevitable "flow" of state updates driven by 
sequential input. 

●​ Spacelike (Δs² > 0): Dominated by spatial configuration change. These represent 
correlations or connections that are not mediated by a direct sequence of surprise-driven 
updates. They are accessible via multiple, equally probable histories. 

●​ Lightlike (Δs² = 0): The boundary. These represent the maximum rate at which a stable 
configuration can be updated by a sequence of surprises—the emergent "speed of 
information" or causality c. 

This causal structure is a necessary output of the functional asymmetry. A system that does not 
distinguish between the cost of error and the gain of structure would have no light cone, no 
invariant causal order, and thus no emergent notion of relativistic locality. The fact that Ze 
dynamics, built on the simple principles of counting and conservation, yields this structure 
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provides a compelling argument that the Minkowski metric is not a fundamental axiom of nature 
but an effective, statistical description of the causal architecture of certain 
information-processing systems (Fong et al., 2016; Rovelli, 1991). 

Conclusion of the Argument 

Therefore, the answer to "Why Minkowski and not Euclidean?" is grounded in dynamics. The 
Euclidean metric describes a world of static configurations. The Minkowski metric describes a 
world of processes, where the construction of order (space) is perpetually paid for by the 
dissipation of surprise (time). The minus sign is the ledger of that transaction. In Ze dynamics, 
this ledger is not postulated; it is kept by the counters and revealed in their statistics, forcing the 
interval to be a difference, thereby crafting the very geometry of spacetime from the arithmetic of 
events. 

The Continuum Limit and Connection to Special 
Relativity 
The preceding sections demonstrated how a Lorentzian-signature interval emerges from the 
discrete statistics of Ze dynamics. To solidify the connection with established physics, we must 
now examine the continuum, steady-state behavior of the system and show how it recovers the 
kinematic relations of Special Relativity (SR). This section illustrates that when the Ze system 
operates in a stable, statistically regular regime, the effective "velocity" of configuration change 
becomes bounded by the conversion constant c, and the light cone emerges as a stability 
boundary within the counting process itself. 

Steady-State Dynamics and the Emergent "Velocity" 

Consider the Ze system operating over a macroscopic interval where its statistical properties are 
stationary. In such a regime, we can define effective, coarse-grained variables. Let the 
cumulative temporal measure be T, interpreted as the emergent proper time, and let the 
cumulative spatial measure along a chosen axis be X. Their differentials, dT and dX, are 
proportional to the root-mean-square of the microscopic ΔT and ΔS over a suitable averaging 
scale (Van Kampen, 1992). 

In a steady state, we expect a stable statistical relationship between spatial and temporal 
increments. We define an emergent velocity v as the ratio of the rate of spatial configuration 
change to the rate of temporal sequential change: 

(1) v = dX/dT. 

From the definitions in Section 5, dX ∝ √〈ΔS²〉 and dT ∝ √〈ΔT²〉 for a given averaging window. 
Therefore, the squared velocity is proportional to the ratio of the expectations: 

(2) v² ∝ 〈ΔS²〉 / 〈ΔT²〉. 
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This ratio is not free but is constrained by the dynamics. A system in a stable, non-equilibrium 
steady state will exhibit a consistent relationship between the variance of its configuration 
changes and the variance of its prediction errors. 

The Interval in the Steady State and the Null Condition 

Substituting the proportionality 〈ΔS²〉 ∝ v² 〈ΔT²〉 into the definition of the Ze interval (Eq. 4, 
Section 5) yields a crucial form. For a macroscopic evolution characterized by a constant v, the 
averaged interval ds² becomes: 

(3) ds² = 〈ΔS²〉 – γ 〈ΔT²〉 ≈ κ 〈ΔT²〉 ( v² – c² ), 

where κ is a positive proportionality constant, and we have identified γ = c² from Section 4. This 
equation is the bridge between the discrete counting framework and relativistic kinematics. 

The null interval, ds² = 0, which defines the emergent light cone, now corresponds to a simple 
condition on the statistical ratio: 

(4) ds² = 0 ⇔ v² = c². 

This condition states that the light cone is not an abstract geometric postulate but the numerical 
stability boundary of the Ze counting process. When v² → c², the spatial stabilization rate 
perfectly balances the temporal destabilization rate, scaled by the fundamental conversion 
factor. Histories attempting to exceed this ratio (v² > c²) would require 〈ΔS²〉 > c² 〈ΔT²〉. In the 
Ze dynamics, this would statistically violate the conservation of the invariant I or the 
stabilization-destabilization balance, making such histories exponentially suppressed in the path 
ensemble—they become statistically impossible or unstable (Feynman & Hibbs, 1965). Thus, c² 
emerges not merely as a conversion constant but as a maximum sustainable signal velocity 
within the network, above which coherent state propagation breaks down. 

Recovery of Relativistic Kinematics 

From this foundation, the standard relations of SR follow naturally. First, the invariance of ds² for 
different observers (here, different internal counting sequences or coarse-graining choices) is a 
direct consequence of its definition as a statistical average over microscopic invariants (Δs_k²). 
Different "observers" correspond to different ways of partitioning the event stream into 
begin/inverse pathways or different choices of spatial axis counters, but the underlying 
conservation law for I ensures the form of ds² remains covariant. 

Second, time dilation and length contraction emerge from the conservation of the interval. 
Consider two histories between the same starting and ending macroscopic configurations. One 
history is at rest (v = 0, so ds² = – c² 〈ΔT_0²〉). Another history involves relative motion (v > 0, 
so ds² = 〈ΔT_v²〉(v² – c²)). Equating the intervals (as they connect the same boundary states) 
gives: 

(5) –c² 〈ΔT_0²〉 = 〈ΔT_v²〉(v² – c²). 
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Solving for the ratio of the temporal measures (the accumulated proper times) yields: 

(6) 〈ΔT_v²〉 / 〈ΔT_0²〉 = 1 / (1 – v²/c²). 

Taking square roots (and interpreting the square root of the mean-squared temporal measure as 
the proper time), we obtain the familiar time dilation factor. A similar argument, holding the 
proper time fixed, leads to length contraction. These are not independent postulates but 
statistical necessities for the consistent matching of boundary conditions under the constraint of 
a fixed ds². 

The Light Cone as a Phase Transition Boundary 

The interpretation of the light cone as a stability threshold is profound. In the Ze framework, the 
spacelike region (v < c) represents a phase of stable, correlated propagation where 
configuration updates are causally linked to sequential processing. The "superluminal" region (v 
> c) would represent a phase of unstable, decorrelated noise where structural changes occur 
faster than the underlying sequential process can coherently support—analogous to a loss of 
causal contact. The null cone v = c is the critical line separating these regimes. This view 
resonates with approaches in condensed matter physics where emergent relativistic physics 
and light cones arise near critical points in quantum systems (Calabrese & Cardy, 2006; Liberati, 
2013). 

Conclusion of the Derivation 

Therefore, the full kinematic structure of Special Relativity is contained within the statistical limits 
of Ze dynamics. The constant c is the ratio of fundamental scales in the spatial and temporal 
counting lattices. The Minkowski interval is the statistically averaged, conserved quantity 
governing coarse-grained histories. The light cone is the critical surface where the rate of 
configuration change saturates the system's causal capacity. This provides a concrete, 
bottom-up derivation of relativistic spacetime as an effective theory, arising from the 
self-organizing statistics of a discrete, information-theoretic substrate. 

Discussion: The Geometric Interpretation and 
Implications 
The derivation presented in this work culminates in a specific and consequential interpretation of 
the nature of spacetime. We can now assert, based on the Ze dynamics model, that Minkowski 
spacetime is an effective, statistical geometry arising from the balance between structural 
stabilization and sequential novelty in a discrete, information-processing substrate. This 
conclusion carries significant implications for our understanding of the foundations of physics, 
shifting the ontological status of spacetime from a fundamental given to an emergent 
phenomenon. 
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Reinterpreting the Spacetime Continuum 

The conventional framework of Special Relativity begins with the Minkowski metric as a 
foundational postulate. Spacetime is treated as an a priori four-dimensional continuum endowed 
with a fixed Lorentzian signature. Events are points in this continuum, and particles trace out 
worldlines. While immensely successful, this approach leaves the origin of this specific 
geometric structure unexplained. 

The Ze dynamics framework inverts this logical hierarchy. Here, the primitive elements are not 
points in a continuum but discrete events and the counting operations they trigger. The 
continuum, along with its geometric properties, is a secondary, coarse-grained description. 
Specifically: 

●​ It is not a postulate, but a derived consequence of statistical averaging. 

●​ It is not an a priori geometry, but an effective description of relational dynamics between 
internal degrees of freedom. 

●​ It is not an abstract continuum, but a statistical limit of discrete counters (Nadal & Rau, 
2020). 

The coordinates t and x are not fundamental labels but emergent, macroscopic variables. They 
are proportional to accumulated counts of two distinct types of operations: t to the 
root-mean-square of sequential prediction errors (temporal novelty), and x to the 
root-mean-square of structural reconfigurations (spatial ordering). The fabric of spacetime is, in 
this view, woven from the ledger of these counts. 

The Minus Sign as a Relational Indicator 

The most distinctive feature of the Minkowski metric—the minus sign separating the temporal 
and spatial components—receives a clear, non-mystical interpretation. It is the mathematical 
signature of a fundamental relational opposition within the dynamics. The spatial term (+dx²) 
quantifies the gain in structural stability and order. The temporal term (–c²dt²) quantifies the cost 
paid in sequential surprise or prediction error required to achieve that order. The interval ds² is 
thus a balance sheet. A negative interval (timelike separation) indicates a history where the cost 
of surprise outweighs the gain in structure—a directed, causal sequence. A positive interval 
(spacelike separation) indicates a history where structural correlations exist largely 
independently of a specific costly sequence. This interpretation aligns with informational 
approaches to physics, where energy and entropy play complementary roles (Friston, 2010; 
Rovelli, 1991). 

Connections to Quantum Gravity and Pre-Geometric Programs 

This work situates itself within a broader research program seeking to derive spacetime and 
gravity from more fundamental, non-geometric principles. The Ze dynamics approach shares 
conceptual ground with several such approaches: 
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1.​ Causal Set Theory: In Causal Set Theory, spacetime is approximated by a discrete, 
partially ordered set of events, and the continuum metric is expected to emerge from the 
counting of causal relations (Bombelli, Lee, Meyer, & Sorkin, 1987). Ze dynamics can be 
viewed as providing a dynamical and statistical mechanism for such an emergence, 
where the counters C_i encode coarser-grained causal information, and their 
conservation law generates the metric. 

2.​ Emergent Gravity/Entropic Gravity: Analogies exist with approaches where 
gravitational dynamics is derived from thermodynamic or entropic considerations 
(Verlinde, 2011). In Ze dynamics, the metric itself is an entropic object, derived from 
counting micro-histories (ds² emerges from log N). The stabilization-destabilization 
balance mirrors a thermodynamic free-energy principle, with c acting as a critical 
temperature. 

3.​ Quantum Foundations: The bipartite structure of Ze dynamics (begin/inverse) and the 
quadratic invariant are reminiscent of the structure of two-state systems and probability 
conservation in quantum mechanics. This suggests a potential deeper link, where the 
quantum mechanical phase and the spacetime metric might share a common origin in 
the statistics of information processing (Fong et al., 2016; Singh, 2017). 

Limitations and Future Directions 

The current model is a simplified, proof-of-concept derivation. It recovers the kinematics of flat 
(Minkowski) spacetime. The immediate challenge is the inclusion of dynamics—the emergence 
of curvature and the Einstein field equations. A promising route is to consider the conversion 
factor c and the scaling constants α, β not as global constants, but as slowly varying functions of 
the local statistical state of the Ze network. Inhomogeneities in the event stream or local 
constraints on counter dynamics could then lead to an effective curved geometry, much like a 
refractive index curves the path of light. The conservation equation for the invariant I would then 
assume the role of a Bianchi identity. 

Furthermore, the model's discrete nature naturally invites investigation into quantum effects. 
Fluctuations in the counter increments below the coarse-graining scale could give rise to 
stochastic deviations from classical geodesics, potentially modeling quantum particle behavior 
or spacetime foam at the Planck scale. 

We have presented a coherent framework in which the Minkowski metric, the cornerstone of 
Special Relativity, emerges naturally from the non-equilibrium, stochastic dynamics of a system 
with simple counting rules and a conservation law. The geometry of spacetime is revealed to be 
a statistical description of the way a system balances the cost of processing new information 
(time) against the benefit of building a stable internal model (space). The minus sign in the 
metric is not a philosophical statement about the nature of time but a computational necessity 
arising from this antagonistic relationship. This work provides a concrete, mechanistic model 
that demystifies the origin of Lorentzian geometry and offers a novel, information-based 
pathway toward unifying the foundations of physics. 
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Conclusion 
This work has presented a derivation of the Minkowski metric from first principles of a discrete, 
stochastic dynamical system—Ze dynamics. The core achievement is the demonstration that 
the fundamental geometry of spacetime, characterized by the invariant interval ds² = –c²dt² + 
dx², is not a necessary postulate of physics but a statistical, emergent property of an underlying 
informational process. The derivation proceeds through several logically interlocked steps, each 
replacing a traditional axiom with a computable, dynamical mechanism. 

We began by defining the pre-geometric substrate: a system of counters C_i updated by a 
stream of discrete events, governed by a statistically conserved quadratic invariant, I = Σ C_i². 
This invariant served as the foundational "seed" of geometry. The critical symmetry-breaking 
step was the functional bifurcation of the dynamics into two operationally distinct modes. The 
temporal component, T, was defined from the sum of squares of sequential, order-dependent 
increments (ΔC_i^{begin}), capturing the system’s accumulated prediction error or "surprise." 
The spatial component, S, was defined from the sum of squares of structural, order-invariant 
differences between canonical and complementary (inverse) update pathways (ΔC_i^{begin} – 
ΔC_i^{inverse}), capturing net configuration change. 

The oppositional relationship between these modes—where spatial stabilization is statistically 
paid for by temporal destabilization, and vice-versa—led directly to the Lorentzian signature. 
The conservation of I enforced an anticorrelation, dictating that their contributions combine as a 
difference, yielding the emergent interval Δℐ = αΔS² – βΔT². The minus sign was therefore 
derived, not assumed. It is the indelible mathematical signature of the antagonistic roles these 
processes play: one builds order (positive contribution), while the other reflects the cost of 
building it (negative contribution). This functional interpretation demystifies the metric’s 
signature, grounding it in system dynamics rather than abstract geometry (Friston, 2010). 

The numerical recipe in Section 5 translated this theory into a concrete algorithm. By tracking 
begin and inverse increments, computing stepwise variances, and averaging, one can directly 
compute an interval ds² from any event stream. This practical methodology underscores the 
framework’s falsifiability and provides a tool for analyzing causal structure in complex systems. 

In the continuum, steady-state limit, this framework recovers the full kinematics of Special 
Relativity. The conversion constant c = sqrt(β/α) emerges as a fundamental scale relating the 
lattice units of the temporal and spatial counting processes. Most significantly, the light 
cone—the null surface where ds² = 0—arises not as a fundamental axiom of causality but as a 
numerical stability threshold. It represents the maximum rate (v = c) at which coherent structural 
information can propagate through the network relative to the underlying sequential processing 
rate. Histories implying v > c are exponentially suppressed in the statistical path integral, as they 
would violate the system’s self-consistency conditions (Feynman & Hibbs, 1965). Thus, the 
causal structure of relativity is revealed as a phase boundary in the space of dynamical histories 
(Calabrese & Cardy, 2006). 

The implications of this conclusion are profound for the foundations of physics: 
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1.​ Spacetime is not fundamental. Minkowski spacetime is an effective, coarse-grained 
description, a "thermodynamic" limit of discrete counting dynamics. 

2.​ Space and time are not primitive dimensions. They are operational modes of 
information processing: time as the monitoring of sequential novelty, space as the 
mapping of structural relations. 

3.​ Special Relativity is a limiting regime. The theory of Special Relativity is recovered as 
the effective, continuum theory describing the stable, statistical equilibrium of a Ze-like 
system. Its postulates are theorems within this more fundamental framework. 

This work connects to broader research programs in emergent gravity, causal sets, and 
quantum foundations (Bombelli et al., 1987; Fong et al., 2016; Rovelli, 1991). It provides a 
specific, mechanistic model showing how Lorentz invariance and causal structure can naturally 
crystallize from pre-geometric ingredients. Future work must explore the path to curvature and 
gravitation—likely by allowing the "constants" α, β, and c to become dynamical fields reflecting 
local statistical states of the Ze network—and investigate potential quantum aspects arising 
from microscopic fluctuations in the counter increments. 

In summary, we have shown that the Minkowski metric, the stage upon which modern physics is 
set, can be understood as a statistical invariant constructed from the simplest of operations: 
counting, differentiating, and conserving. The geometry of our world may ultimately be an 
arithmetic of events. 
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