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Abstract 
This paper develops a foundational theory in which the geometry of spacetime and the 
dynamics of matter emerge from the evolution of a conserved real state vector, Ψ^μ, in an 
abstract four-dimensional internal space endowed with a Minkowski metric η_{μν}. The theory is 
constructed from two core axioms: the strict conservation of the state vector's Minkowski norm 
and the condition of anti-parallelism between its temporal and spatial components. We derive 
the minimal and covariant action principle consistent with these axioms, which takes the form of 
a worldline action for a relativistic particle, S = -m c ∫ √(-η_{μν} dΨ^μ dΨ^ν). We demonstrate 
that the equations of motion describe a Lorentz-rotation of Ψ^μ, with its components Ψ^μ ≡ (c t, 
x^i) directly identifiable as physical spacetime coordinates. This identification recovers standard 
relativistic mechanics, with mass m reinterpreted as the frequency of the state vector's internal 
oscillation. The framework provides a unified geometric interpretation where physical time, 
space, motion, and mass are seen as derived, phenomenological aspects of a more 
fundamental, conserved dynamics in state space. The formulation suggests a natural pathway 
toward a field-theoretic generalization where the spacetime metric emerges as an induced 
quantity from the gradients of the state vector field. 
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From a State Vector to an Emergent Metric Field 

The Fundamental Variable and Kinematic Constraint 

The construction begins by postulating a fundamental object: a four-component real state vector 
Ψ^μ(λ), where the index μ = 0, 1, 2, 3. The component Ψ^0 is identified as a temporal variable 
T, while the components Ψ^i (for i=1,2,3) are identified as spatial variables S^i. The parameter λ 
serves as a bookkeeping parameter for evolution, not an a priori physical time. The fundamental 
kinematic constraint is the conservation of the “norm” of this vector with respect to the 
Minkowski metric η_{μν} = diag(-1, +1, +1, +1). This reflects the core axioms of equal 
magnitudes and anti-parallelism for stable dynamical entities (Fong et al., 2016). The conserved 
quantity is: 

Q = η_{μν} Ψ^μ Ψ^ν = -(Ψ^0)^2 + (Ψ^1)^2 + (Ψ^2)^2 + (Ψ^3)^2 = constant. 

For a real-valued vector, Q can be positive, negative, or zero. We focus on the non-degenerate 
case Q ≠ 0, which defines a hyperboloid in the state space. This conservation law is the 
foundational symmetry from which dynamics will be derived. 

Minimal and Covariant Lagrangian Dynamics 

To promote the state vector to a dynamical entity, we seek an action principle. The demand for 
minimalism and covariance leads naturally to a Lagrangian that is proportional to the “square” of 
the first derivative with respect to λ, contracted with the fixed Minkowski metric. This is 
analogous to the action for a relativistic point particle, but here the coordinates are the state 
vector components themselves (Rovelli, 2004). The minimal action is: 

S[Ψ] = (1/2) ∫ dλ η_{μν} (dΨ^μ/dλ)(dΨ^ν/dλ). 

The resulting equation of motion is simply the wave equation in the parameter λ: 

d²Ψ^μ/dλ² = 0. 

The solutions are straight lines in the state vector space: Ψ^μ(λ) = a^μ λ + b^μ, where a^μ and 
b^μ are constants satisfying η_{μν} a^μ a^ν = const. While this theory is covariant and minimal, 
it is too simplistic—it describes a non-interacting, structureless entity. The Minkowski metric 
η_{μν} here is a fixed, absolute background, not an emergent property. The state vector merely 
moves through a pre-existing geometric arena, which contradicts the goal of deriving spacetime 
from the relational properties of the state vector itself. 

Introducing Self-Interaction and the Emergent Metric 

The key step is to replace the fixed background metric η_{μν} with a dynamical object that 
depends on the state vector. This embodies the idea that the geometry of the space in which 
Ψ^μ evolves should be determined by Ψ^μ itself, creating a feedback loop. We introduce a 

© Under CC BY-NC-ND 4.0 International License | Longevity Horizon, 2(4)​ ​ ​ ​ 2 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://longevity.ge/index.php/longhoriz


 

symmetric tensor g_{μν}[Ψ] which is a functional of the state vector. The minimal covariant 
action that generalizes the previous one becomes: 

S[Ψ] = (1/2) ∫ dλ g_{μν}[Ψ] (dΨ^μ/dλ)(dΨ^ν/dλ). 

The tensor g_{μν} is not an independent field; it is defined as a specific function of Ψ^μ to 
enforce the core axioms. A natural ansatz, inspired by the structure of induced metrics in 
embedding theories (Guven, 2004), is: 

g_{μν}[Ψ] = α η_{μν} + β (∂Φ/∂Ψ^μ)(∂Φ/∂Ψ^ν), 

where α and β are constants, and Φ is a scalar potential function constructed from Ψ. To reflect 
the conservation law Q = constant, the obvious choice is Φ ≡ Q = η_{ρσ} Ψ^ρ Ψ^σ. This yields: 

g_{μν}[Ψ] = α η_{μν} + 4β η_{μρ} η_{νσ} Ψ^ρ Ψ^σ. 

The second term is a dyadic product Ψ_μ Ψ_ν, where indices are lowered with η. This metric 
now depends quadratically on the state vector. The action is now nonlinear: 

S[Ψ] = (1/2) ∫ dλ [ α η_{μν} Ψ̇^μ Ψ̇^ν + 4β (η_{μν} Ψ^μ Ψ̇^ν)^2 ], 

where the dot denotes a d/dλ. The second term couples the “velocity” Ψ̇^μ to the “position” Ψ^μ, 
introducing a self-interaction. The Euler-Lagrange equations derived from this action are more 
complex than the wave equation. They describe the autodynamic evolution of a state vector 
whose effective kinematic space is curved by its own amplitude. The conserved quantity Q now 
plays the role of a potential shaping the emergent geometry g_{μν}. In this picture, the 
Minkowski metric η_{μν} retains its role only as an internal symmetry template defining the 
conserved form Q; the physical metric governing evolution is g_{μν}[Ψ]. 

Toward a Full Field Theory: The State Vector as a Field 

The final step is to transition from a single state vector evolving in λ to a field defined over a 
continuum. This is achieved by promoting Ψ^μ(λ) to a field Ψ^μ(X^α), where X^α are four new 
abstract coordinates. The parameter λ is absorbed into this manifold. The conservation law 
becomes a local field constraint: η_{μν} Ψ^μ Ψ^ν = constant at each point X. The derivative d/dλ 
is replaced by a partial derivative ∂_α ≡ ∂/∂X^α. 

The minimal covariant action in this setting is a sigma-model-like action (Padmanabhan, 2010): 

S[Ψ] = (1/2) ∫ d⁴X √(-g) g^{αβ} G_{μν}[Ψ] ∂α Ψ^μ ∂β Ψ^ν, 

where g{αβ} is now the emergent spacetime metric, and G{μν}[Ψ] is the metric on the field 
space (target space) of Ψ. Crucially, g_{αβ} must itself be constructed from the field Ψ^μ and its 
derivatives to close the system. A self-consistent closure can be postulated by identifying the 
spacetime metric with the induced metric on a hypersurface defined by the field configuration: 

g_{αβ}(X) = η_{μν} ∂α Ψ^μ ∂β Ψ^ν. 
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This is a direct generalization of the earlier ansatz for g{μν}[Ψ]. Here, g{αβ} measures the 
“stretch” of the field Ψ^μ in the internal Minkowski space as it maps onto the coordinate manifold 
X^α. The action then becomes purely a function of the field Ψ: 

S[Ψ] = (1/2) ∫ d⁴X √(-det(η_{μν} ∂_α Ψ^μ ∂β Ψ^ν)) η^{ρσ} η{μν} ∂_ρ Ψ^μ ∂σ Ψ^ν. 

This is a nonlinear field theory for four scalar fields Ψ^μ(X) with a Born-Infeld-type structure due 
to the determinant factor. The equations of motion for Ψ^μ(X), together with the definition of 
g{αβ} as the induced metric, create a coupled system where the spacetime geometry and the 
state field co-determine each other. In this formulation, spacetime points are not fundamental; 
they are labels for distinguishable configurations of the Ψ^μ field. The causal structure, 
distances, and durations are all derived from the relational behavior of this field, fulfilling the 
program of deriving spacetime from a conserved state vector. 

Outlook 

The progression outlined—from a conserved vector in a fixed metric, to an autodynamic vector 
with an emergent metric, and finally to a self-consistent field theory—demonstrates a viable 
pathway for constructing spacetime from simpler algebraic axioms. The core conservation law, 
rooted in the ideas of dynamical balance, naturally seeds the emergence of a 
pseudo-Riemannian structure. The final field-theoretic action bears resemblance to theories of 
emergent gravity from condensates or brane-world models (Volovik, 2009), but with a distinct 
starting point in the algebra of a state vector. Future work must address quantization, the 
inclusion of matter degrees of freedom, and the derivation of the Einstein-Hilbert action as an 
effective limit. 

The Geometrical Invariant: From Axioms to 
Worldline Action 

Physical Postulates and their Geometrical Interpretation 

The proposed framework is built upon two fundamental, physically motivated axioms for a 
closed, stable dynamical system represented by a real four-component state vector Ψ^μ (where 
μ = 0,1,2,3): 

1.​ Conservation of Magnitude (Norm): The "size" of the state vector, as measured by a 
Minkowski norm, is a constant of motion. This reflects the idea of a system with a fixed 
total "capacity" or energy-momentum-like invariant. In the context of field theory, such 
conserved quadratic forms often underlie stability and unitary evolution (Weinberg, 
1995). 

2.​ Dynamics as a Rotation (Lorentz Transformation): The internal evolution of the 
system corresponds to a continuous transformation of the state vector that preserves its 
norm. In the space spanned by Ψ^μ, the most general such transformations are Lorentz 
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transformations, SO(1,3). This axiom posits that all possible dynamical histories of the 
system are connected by paths that are "rotations" in this internal Minkowski space. This 
concept of dynamics as a flow on a group manifold is a cornerstone of many 
foundational approaches (Rovelli, 1991). 

These axioms have an immediate and powerful geometrical consequence. If the magnitude 
√|η_{μν} Ψ^μ Ψ^ν| is constant, and the dynamics is a continuous norm-preserving 
transformation, then the evolution of the state vector traces a curve on a hyperboloid embedded 
in the four-dimensional state space. For a timelike norm (η_{μν} Ψ^μ Ψ^ν < 0), this is a de 
Sitter-like hyperboloid; for a spacelike norm, it is a hyperbolic sheet. The parameter λ labels 
points along this worldline in the state space, not in physical spacetime. 

The Minimal Worldline Action 

Guided by the principle of minimality and the requirement of covariance under internal Lorentz 
transformations, we construct the action. In differential geometry, the simplest invariant quantity 
associated with a curve is its length. Therefore, the most natural action for the evolution of 
Ψ^μ(λ) on the constraint hyperboloid is proportional to the "length" of its worldline in the state 
space, measured with the internal Minkowski metric η_{μν} = diag(-1, +1, +1, +1). This yields: 

S[Ψ] = -α ∫ dλ √( - η_{μν} (dΨ^μ/dλ)(dΨ^ν/dλ) ) 

where α is a positive constant with dimensions of action. The negative sign inside the square 
root and the overall minus sign ensure a real action for timelike trajectories (dΨ^μ/dλ) in the 
state space, drawing a direct formal analogy to the proper time of a relativistic particle. 

However, the square root form, while geometrically transparent, is inconvenient for quantization 
and for examining symmetries. A classically equivalent, simpler form is obtained by using a 
quadratic action, analogous to the Polyakov action in string theory or the einbein formulation of 
point particle mechanics (Brink, Di Vecchia, & Howe, 1976). We instead postulate the action: 

S[Ψ] = (1/2) ∫ dλ [ e^{-1}(λ) η_{μν} (dΨ^μ/dλ)(dΨ^ν/dλ) - e(λ) M^2 ]. 

Here, e(λ) is an auxiliary field (an "einbein") that can be considered as a square root of the 
induced metric on the one-dimensional worldline. The constant M^2 is related to the fixed norm 
Q from the axioms. Varying the action with respect to e(λ) gives the constraint equation: 

e^2(λ) = - (1/M^2) η_{μν} (dΨ^μ/dλ)(dΨ^ν/dλ). 

Substituting this back into the quadratic action recovers the original square-root form, identifying 
α = M. This demonstrates the equivalence. The conserved quantity from the equations of motion 
is precisely: 

Q = η_{μν} Ψ^μ Ψ^ν = constant, 

which is a direct manifestation of Axiom 1. The equation of motion obtained by varying Ψ^μ is: 

(d/dλ)[ e^{-1}(λ) (dΨ^μ/dλ) ] = 0. 
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This describes a geodesic motion on the flat state space, but subject to the constraint Q = 
constant. The solutions are of the form Ψ^μ(λ) = A^μ cosh(ωλ) + B^μ sinh(ωλ) for a timelike Q, 
representing a hyperbolic "rotation" or boost in the state space—a continuous Lorentz 
transformation. This directly embodies Axiom 2: the dynamical evolution is indeed a flow 
generated by the Lorentz group. 

Symmetries and the Emergence of a Prespacetime 

This simple worldline model already exhibits rich symmetry structures that hint at the origins of 
spacetime: 

1.​ Reparametrization Invariance: The action is invariant under arbitrary monotonic 
transformations of the parameter λ → λ'(λ). This is a fundamental gauge symmetry, 
indicating that λ itself has no physical meaning; only the ordered sequence of states 
matters. This symmetry is the one-dimensional analog of diffeomorphism invariance in 
general relativity. 

2.​ Global Internal Lorentz Invariance: The action is manifestly invariant under constant 
SO(1,3) transformations of the state vector: Ψ^μ → Λ^μ_ν Ψ^ν. This is the symmetry of 
the fixed metric η_{μν}. 

3.​ Conservation Laws: The reparametrization invariance leads to a constraint (the 
"Hamiltonian constraint" upon canonical quantization), which is the expression of the 
fixed norm. The global Lorentz invariance leads to conserved "angular momentum" 
charges in state space: L^{μν} = Ψ^μ (dΨ^ν/dλ) - Ψ^ν (dΨ^μ/dλ). These charges are the 
generators of the internal Lorentz transformations. 

At this stage, we have a "prespacetime" theory. The coordinates X^μ of a physical spacetime 
are not yet present. The fundamental entities are abstract states Ψ^μ and their evolution 
parameter λ. However, the mathematical structure is identical to that of a single relativistic 
particle propagating in a fictitious four-dimensional Minkowski space. This is a crucial point: the 
machinery of special relativity (worldlines, proper time, Lorentz invariance) appears here not as 
a description of physical spacetime, but as a description of the intrinsic dynamics of an abstract 
state vector obeying simple conservation axioms. 

The Need for Generalization: From Worldline to Field 

The free worldline model, while foundational, is insufficient to generate a dynamical spacetime 
geometry. It describes only a single, non-interacting degree of freedom. Physical spacetime is 
characterized by local relationships, fields, and many degrees of freedom interacting at different 
"places." 

The logical next step, therefore, is to promote the worldline theory to a field theory. This involves 
two key conceptual leaps: 
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1.​ Promoting the State Vector to a Field: Instead of a single worldline Ψ^μ(λ), we 
consider a continuous infinity of them, or equivalently, a field Ψ^μ(x^a) where x^a are 
four new, initially meaningless manifold coordinates. The parameter λ is absorbed, and 
evolution is now in this new coordinate space. 

2.​ Making the Metric Dynamical: The fixed internal metric η_{μν} must be replaced by a 
dynamical metric g_{μν} that depends on the field Ψ^μ. This is the step where the 
internal symmetry of the state space begins to dictate the geometry of the coordinate 
manifold x^a. The constraint of conserved norm must now be applied locally, leading to a 
nonlinear theory. 

The worldline action of this section serves as the generating seed for these constructions. Its 
symmetries—reparametrization invariance and Lorentz invariance—will be elevated to become 
the guiding principles for building a field-theoretic action in the next stage of development, 
moving decisively from the mechanics of a single state to the dynamics of a field from which 
spacetime itself can emerge. 

The Core Lagrangian: Worldline Dynamics in State 
Space 

Constructing the Minimal Lagrangian 

Following the axiomatic foundation of a conserved state vector norm and dynamics as rotation, 
we now construct the minimal dynamical theory. Let the fundamental variable be the 
four-component real state vector Ψ^μ(λ) = (T(λ), S^i(λ)), where i=1,2,3. The parameter λ orders 
states but is not identified with physical time a priori. The fixed internal metric is η_{μν} = 
diag(-1, +1, +1, +1). 

The axioms dictate two strict constraints on any allowed Lagrangian L: 

1.​ It must yield the conservation of the Minkowski norm: (d/dλ)(η_{μν} Ψ^μ Ψ^ν) = 0. 

2.​ It must be invariant under global internal Lorentz transformations Ψ^μ → Λ^μ_ν Ψ^ν, 
reflecting the rotational symmetry of the state space. 

The simplest scalar quantity that can be constructed from the first derivatives of the state vector 
is the "kinetic term" η_{μν} (dΨ^μ/dλ)(dΨ^ν/dλ). This term is manifestly Lorentz invariant. To 
enforce the conservation of the norm as an equation of motion (rather than as a rigid constraint), 
we must ensure the Lagrangian possesses a specific symmetry. The action S = ∫ L dλ must be 
invariant under transformations that leave the norm invariant. The kinetic term alone, however, 
does not generally conserve Ψ^2 unless specific boundary conditions or additional constraints 
are applied. 
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The direct route to a theory where the norm is dynamically conserved is to use the Lagrangian 
for a free relativistic particle, but reinterpreted in state space. This yields the core, minimal 
Lagrangian: 

L_0 = -α √( - η_{μν} Ψ̇^μ Ψ̇^ν ) = -α √( Ṫ^2 - Ṡ^i Ṡ_i ). 

Here, α is a positive constant with dimensions of action, and the dot denotes differentiation with 
respect to λ. The expression under the square root must be positive for a timelike trajectory in 
state space, hence the minus sign inside the radical. This Lagrangian is precisely analogous to 
the Lagrangian for a massive relativistic particle moving in a 4D Minkowski spacetime (Landau 
& Lifshitz, 1975), but here the "spacetime" is the abstract space of the state vector components 
(T, S^i). 

Physical Interpretation: Dynamics as Internal Rotation 

The physical meaning of L_0 is profound and distinct from conventional particle mechanics. The 
system described by Ψ^μ(λ) does not move through physical space or time. Instead, it "rotates" 
or evolves within its own internal state space. The temporal component T(λ) and the spatial 
components S^i(λ) are treated democratically as coordinates on this internal manifold. 

To see this explicitly, consider the canonical momenta derived from L_0: 

p_μ = ∂L_0/∂Ψ̇^μ = α (η_{μν} Ψ̇^ν) / √( - η_{ρσ} Ψ̇^ρ Ψ̇^σ ). 

These momenta satisfy the primary constraint: 

η^{μν} p_μ p_ν + α^2 = 0. 

This is a mass-shell condition in the momentum space of the state vector. The Hamiltonian, 
constructed via Legendre transformation, vanishes identically due to reparametrization 
invariance in λ—a hallmark of theories describing evolution in terms of worldline geometry 
(Henneaux & Teitelboim, 1992). 

The equations of motion are: 

(d/dλ)[ Ψ̇_μ / √( - Ψ̇^2 ) ] = 0. 

The general solution is a straight line in the state space when parameterized by the analogue of 
proper time. However, when we fix the parameter λ arbitrarily, the evolution appears as a 
hyperbolic trajectory. For instance, a simple solution conserving a timelike norm Q = -R^2 is: 

T(λ) = R sinh(ωλ), S^1(λ) = R cosh(ωλ), S^2 = S^3 = 0. 

This describes a continuous Lorentz boost in the (T, S^1) plane of state space. The state vector 
sweeps out a hyperbola, its tip tracing a path of constant "distance" from the origin. The 
dynamics is pure internal reorientation—a boost. Another solution could be a rotation in a purely 
spatial plane (S^1, S^2), conserving a spacelike norm. All such solutions are symmetry 
transformations of the internal Minkowski space, confirming that the fundamental dynamics is 
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indeed a rotation (a Lorentz transformation) in the space of states, as postulated. This internal 
evolution is the precursor to what we will later interpret as physical motion and time flow. 

Symmetry and the Conserved Norm 

The Lagrangian L_0 possesses the key symmetry that enforces the conservation of the state 
vector's norm. While it is not globally translationally invariant in Ψ-space (which would lead to a 
trivial theory), its specific square-root form, combined with reparametrization invariance, yields 
the conserved quantity we seek. Using the equations of motion, one can directly show that: 

(d/dλ)(η_{μν} Ψ^μ Ψ^ν) = 0. 

Thus, the dynamical path dictated by L_0 automatically keeps the state vector on a fixed 
hyperboloid in state space. The constant value of this norm, Q, becomes a fundamental 
parameter characterizing different "sectors" of the theory—analogous to mass in particle 
physics. 

The presence of the square root in L_0 makes the quantization and analysis of interactions 
non-trivial. Therefore, it is often advantageous to use an equivalent, classically isomorphic 
formulation (Polyakov, 1981) that is quadratic in derivatives: 

L_0' = (1/(2e(λ))) η_{μν} Ψ̇^μ Ψ̇^ν - (e(λ) α^2)/2. 

Here, e(λ) is an auxiliary einbein field. Variation with respect to e(λ) yields its equation of motion: 

e(λ) = √( - η_{μν} Ψ̇^μ Ψ̇^ν ) / α. 

Substituting this back into L_0' recovers the original L_0 up to a total derivative. This quadratic 
Lagrangian makes the internal Lorentz symmetry and the constraint structure more transparent 
for canonical analysis. The constraint from e(λ) becomes: 

η_{μν} Ψ̇^μ Ψ̇^ν + e^2(λ) α^2 = 0, 

which is the classical precursor to the mass-shell condition. 

Limitations and the Path to a Field Theory 

The Lagrangian L_0, while elegant and axiomatically faithful, describes a single, isolated 
worldline in state space. It represents a zero-dimensional object—a "point" in the state 
manifold—evolving along its trajectory. This is insufficient to describe a universe with multiple 
entities, interactions, and local degrees of freedom that could be identified with a physical 
spacetime geometry. 

The key limitation is the absence of any notion of locality or field-ness. All information is 
contained in the single vector Ψ^μ(λ). There is no concept here of something happening "here" 
versus "there." To progress from this mechanical model to a theory from which spacetime can 
emerge, we must promote the state vector from a function of a single parameter λ to a field over 
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a continuum. That is, we must consider Ψ^μ(x^a), where x^a are four new coordinates that will 
eventually acquire the meaning of spacetime coordinates through the dynamics of Ψ itself. 

This promotion requires a radical step: the internal metric η_{μν}, which is fixed in L_0, must 
become dependent on the field Ψ^μ and its derivatives with respect to the new coordinates x^a. 
The Lagrangian will then become a functional of Ψ^μ(x) and its gradients, L[Ψ, ∂Ψ]. The 
conserved norm condition will become a local constraint, and the "worldline" action S = ∫ L_0 dλ 
will generalize to a "spacetime" action S = ∫ L[Ψ, ∂Ψ] d^4x. The core structure of L_0—its 
reliance on the Minkowskian kinetic term and its link to conservation—will serve as the guiding 
template for this construction, ensuring the axioms of norm conservation and rotational 
dynamics are embedded at the heart of the emerging field theory. 

Implementing Anti-Parallelism: The Constraint of 
Spatial Alignment 

The Anti-Parallelism Axiom as a Linear Constraint 

The foundational axioms of the theory are two-fold: the conservation of the state vector's 
Minkowski norm and the condition of anti-parallelism between the spatial and temporal 
components. While the first axiom leads to the kinetic structure of the Lagrangian L₀, the second 
axiom imposes a critical geometric constraint on the configuration of the state vector itself. This 
axiom posits that, for a fundamental, stable dynamical unit, the spatial part of the state vector S 
is strictly anti-aligned with the temporal part T, up to a universal constant of proportionality. 
Mathematically, this is expressed as: 

S = -c n̂ T 

where S is the spatial vector (S¹, S², S³), T is the temporal component Ψ⁰, c is a fundamental 
constant with dimensions of velocity, and n̂ is a fixed unit vector in the internal spatial state 
space. The fixity of n̂ is crucial; it breaks the full internal SO(3) rotational symmetry of the spatial 
state subspace down to an axial symmetry around n̂. This condition implies that the state vector 
Ψ^μ = (T, S) is not free to point in any direction of the internal (1+3)-dimensional Minkowski 
space. Instead, its spatial orientation is rigidly locked to its temporal magnitude. Physically, this 
can be interpreted as a definition of a preferred "rest frame" or alignment axis within the internal 
state space, a concept with parallels in theories of spontaneous symmetry breaking (Nambu & 
Jona-Lasinio, 1961). The constant c, which will be identified with the speed of light, sets the 
scale between temporal and spatial magnitudes, ensuring they are commensurate. 

Lagrange Multiplier Formulation 

The Lagrangian formalism provides a powerful and systematic method for incorporating such 
holonomic constraints: the method of Lagrange multipliers (Lanczos, 1970). We start from the 
free, reparametrization-invariant Lagrangian L₀ derived from the norm conservation axiom. The 
anti-parallelism condition, being a configurational constraint at each value of the evolution 
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parameter λ, is enforced by adding a term linear in a new set of dynamical fields—the Lagrange 
multipliers. 

The constraint is a vector equation in the internal spatial space. Therefore, it requires a spatial 
vector of Lagrange multipliers, which we denote Λ_i(λ). The total constrained Lagrangian 
becomes: 

L_total = L₀ + L_constraint 

where the constraint term is: 

L_constraint = Λ_i (S^i + c n^i T). 

Here, n^i are the fixed components of the unit vector n̂. The multipliers Λ_i(λ) are auxiliary fields; 
they carry no kinetic term of their own and their equations of motion will precisely yield the 
constraint we wish to enforce. 

The action principle is now S = ∫ dλ L_total. Variation with respect to the primary fields yields 
modified equations of motion. Crucially, variation with respect to each Lagrange multiplier Λ_i 
gives: 

δS/δΛ_i = 0 → S^i + c n^i T = 0. 

This is exactly the anti-parallelism axiom, recovered as an equation of motion. The multipliers 
Λ_i themselves are determined by varying the action with respect to the original state vector 
components T and S^i. These variations produce equations that dictate the force-like role of the 
constraints, ensuring the dynamics are consistent with the rigid alignment. 

Physical Consequences and Symmetry Reduction 

Imposing this constraint has profound implications for the dynamics and the physical 
interpretation of the theory. 

1.​ Reduction of Degrees of Freedom: The unconstrained state vector Ψ^μ has four 
independent components. The three independent equations S^i = -c n^i T reduce the 
number of independent configuration space variables to one. Essentially, the entire state 
vector is determined by a single scalar degree of freedom, T(λ), with S(λ) slaved to it. 
The dynamical content simplifies dramatically. 

2.​ Emergence of a Preferred Axis: The fixed vector n̂ selects a distinguished direction in 
the internal state space. This breaks the isotropy of the internal spatial sector. While the 
full theory with L₀ alone was invariant under internal spatial rotations (part of the Lorentz 
group SO(1,3)), the constrained theory is only invariant under rotations around the n̂ 
axis. This is a clear case of symmetry breaking, where the dynamics (via the constraint) 
picks out a specific vacuum direction. In cosmological terms, this is reminiscent of a 
vector field with a fixed vacuum expectation value, which can influence the structure of 
spacetime (Ackerman et al., 2007). 
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3.​ Modified Equations of Motion: Substituting the constraint S^i = -c n^i T directly into the 
original Lagrangian L₀ yields an effective Lagrangian for the single remaining dynamical 
variable. Assuming n̂ is a timelike unit vector in the full state space (so its internal 
Minkowski norm is -1), the kinetic term becomes: 

L₀ = -α √( - (Ṫ² - Ṡ·Ṡ) ) = -α √( -Ṫ² (1 - c²) ). 

For this to be real and non-degenerate for non-zero Ṫ, we must have c² = 1. This identifies the 
constant c as the fundamental "state-space speed," which will correspond to the invariant speed 
of light in the emergent spacetime. With c=1, the Lagrangian simplifies to L₀_eff = -α √(0), which 
is singular. This indicates that the naive substitution is too crude; the full dynamics must be 
derived from the constrained action before solving the multiplier equations. The correct 
procedure shows that the multipliers Λ_i enforce a form of motion where the evolution of T and 
S is consistent with both the norm conservation and the linear constraint, leading to a 
consistent, albeit constrained, geodesic motion in state space. 

From Rigid Constraint to Dynamical Field 

The formulation with a fixed n̂ and rigid constraint, while implementing the axiom precisely, is 
overly strict for a fundamental theory aimed at deriving spacetime. A fixed, global n̂ is 
non-dynamical and seems artificial. The more physical and fruitful approach is to promote the 
anti-parallelism condition from a rigid constraint to a dynamical principle. 

This can be achieved by allowing the direction n̂ to become a function of the evolution 
parameter, n̂(λ), or, in the subsequent field-theoretic extension, a field n̂(x). The constraint is 
then not on the state vector relative to an absolute background direction, but rather as a 
condition linking T and S to an internal frame field that itself may evolve. In this more 
sophisticated picture, the Lagrange multiplier term becomes: 

L_constraint = Λ_i (S^i + c n^i(λ) T) + L_dyn[n̂], 

where L_dyn[n̂] is a new kinetic term for the field n̂, allowing it to have its own dynamics. The 
anti-parallelism condition now defines the spatial state S relative to a dynamical internal director 
n̂. In the limit where the dynamics of n̂ are frozen, we recover the rigid constraint. 

This step is critical for the transition to a field theory. In the continuum limit, where Ψ^μ becomes 
a field Ψ^μ(x^a) and n̂ becomes a spacetime vector field n^a(x), the constraint may take a form 
like S^μ(x) ∝ n^μ(x) T(x). This intertwines the state field with what will become a tetrad or a 
velocity field in the emergent spacetime, a key feature in formulations of emergent gravity and 
analogue models (Barcelo, Liberati, & Visser, 2005). The Lagrange multiplier method thus 
provides the formal bridge from a simple, rigid axiom to a rich, dynamical geometric structure. 
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An Equivalent Formulation: The Invariant Norm 
Lagrangian 

From Constrained Dynamics to the Covariant Oscillator 

The previous sections developed the theory using a Lagrangian whose square-root structure 
directly enforced reparametrization invariance and, via constraints, the anti-parallelism 
condition. There exists, however, a more elegant and algebraically transparent formulation that 
encodes the axiom of norm conservation not as a consequence of a constraint, but as the 
central dynamical principle itself. This formulation draws a powerful analogy with one of the 
most fundamental systems in physics: the harmonic oscillator. 

Consider the following Lagrangian, quadratic in both the "velocity" Ψ̇^μ and the "position" Ψ^μ: 

L = (1/2) η_{μν} Ψ̇^μ Ψ̇^ν - (1/2) ω² η_{μν} Ψ^μ Ψ^ν. 

This is precisely the Lagrangian for a four-dimensional isotropic harmonic oscillator in a 
Minkowski space (Bohm, 1993). The first term is the kinetic energy in the state space, and the 
second term is a potential energy that is quadratic in the state vector's Minkowski norm. The 
constant ω has dimensions of inverse time (in λ units) and sets the oscillator's characteristic 
frequency. 

This formulation is equivalent in its physical content to the constrained worldline theory, but it 
expresses the axioms in a different, arguably more fundamental, language. The conservation of 
the norm is no longer an add-on; it is built into the very structure of the potential. The potential V 
= (1/2) ω² η_{μν} Ψ^μ Ψ^ν attains its minimum not at a point, but on the entire null cone η_{μν} 
Ψ^μ Ψ^ν = 0. For a non-zero ω, the dynamics will naturally conserve the specific value of this 
norm determined by initial conditions, much like energy conservation in a standard oscillator. 

Equations of Motion: Space and Time in Counterphase 

The Euler-Lagrange equations derived from this Lagrangian are the equations of a 
Minkowski-space oscillator: 

d²Ψ^μ/dλ² + ω² Ψ^μ = 0. 

These are four decoupled harmonic oscillator equations, but with a critical pseudo-Euclidean 
signature. Their general solution is: 

Ψ^μ(λ) = A^μ cos(ωλ) + B^μ sin(ωλ), 

where A^μ and B^μ are constant amplitude vectors. 

Now, let us impose the physical interpretation. Recall that Ψ^μ = (T, S^i). The temporal 
component T(λ) and the spatial components S^i(λ) are all on equal footing as solutions to the 
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same oscillator equation. Crucially, there is no a priori requirement for them to oscillate in phase. 
The anti-parallelism axiom can be naturally realized by selecting specific solutions where the 
spatial and temporal oscillations are in precise counterphase. For instance, a fundamental 
solution satisfying S = -c n̂ T (with c=1) is: 

T(λ) = R cos(ωλ)​
S^1(λ) = -R sin(ωλ), S^2 = S^3 = 0 (for n̂ along the x-axis). 

This solution yields η_{μν} Ψ^μ Ψ^ν = -R²(cos²(ωλ) - sin²(ωλ)) = -R² cos(2ωλ), which is not 
constant. However, a solution that does conserve the norm is: 

T(λ) = R cos(ωλ)​
S^1(λ) = R sin(ωλ). 

Here, η_{μν} Ψ^μ Ψ^ν = -R² (constant). In this case, the spatial and temporal components are in 
quadrature (90° out of phase), not anti-phase. The rigid anti-parallelism condition of Section 4 is 
thus a specific, limiting case of the more general dynamics allowed by the oscillator Lagrangian. 
It corresponds to a particular alignment and phase relationship between the four component 
oscillators. This demonstrates that the oscillator formulation is more general; the specific 
constraint S = -n̂ T can be viewed as a dynamical attractor or a specific solution within this 
broader class (Guendelman, 1999). 

Symmetries and the Emergence of Mass 

The Lagrangian L = (1/2) η_{μν} Ψ̇^μ Ψ̇^ν - (1/2) ω² η_{μν} Ψ^μ Ψ^ν possesses a rich symmetry 
structure: 

1.​ Global Internal Lorentz Invariance: It is manifestly invariant under Ψ^μ → Λ^μ_ν Ψ^ν. 

2.​ λ-Translation Invariance: This leads to conservation of the Hamiltonian (energy in λ). 

3.​ SO(4) or SO(3,1) Symmetry of the Potential: The potential term has the same 
pseudo-rotation symmetry as the kinetic term. 

The canonical Hamiltonian derived from this Lagrangian is: 

H = (1/2) η^{μν} π_μ π_ν + (1/2) ω² η_{μν} Ψ^μ Ψ^ν, 

where π_μ = ∂L/∂Ψ̇^μ = η_{μν} Ψ̇^ν is the canonical momentum. 

This Hamiltonian is strikingly similar to that of a relativistic particle. In fact, if we interpret the 
evolution parameter λ as proper time, the constraint H = constant can be rewritten as: 

η^{μν} π_μ π_ν = constant - ω² η_{μν} Ψ^μ Ψ^ν. 

Upon quantization, where π_μ → -iħ ∂/∂Ψ^μ, this would yield a Klein-Gordon-like equation in the 
state space, not in spacetime: 
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[ η^{μν} ∂_μ ∂ν + (ω²/ħ²) η{μν} Ψ^μ Ψ^ν ] Φ(Ψ) = const. Φ(Ψ). 

Here, the constant ω² plays the role of a mass parameter. Specifically, if we identify m² = ħ² ω² / 
c⁴ (reintroducing c for clarity), then ω sets the scale of inertia in the state space. This is a 
profound result: the frequency of oscillation in the abstract state space is directly related to the 
mass of the entity described by the state vector. A stationary, massive object in physical 
spacetime corresponds to a high-frequency cyclical evolution in its internal state space. This 
resonates with the concept of "zitterbewegung" or inherent oscillatory motion attributed to 
elementary particles in some interpretations of relativistic quantum mechanics (Barut & Zanghi, 
1984). 

The Oscillator as a Bridge to Field Theory 

The harmonic oscillator formulation provides the most direct pathway to a full field theory, which 
is the ultimate goal of deriving spacetime. The logic is as follows: 

1.​ Discretization to a Lattice: Imagine not a single state vector Ψ^μ(λ), but a lattice or 
network of them, labeled by a discrete index k: Ψ^μ_k(λ). Each node is an independent 
Minkowski oscillator. 

2.​ Introduction of Nearest-Neighbor Coupling: To introduce locality and interaction, we 
add a coupling term between neighboring oscillators. The simplest covariant coupling is:​
L_coupling = -(κ/2) Σ_{<k,l>} η_{μν} (Ψ^μ_k - Ψ^μ_l)(Ψ^ν_k - Ψ^ν_l),​
where κ is a coupling constant and <k,l> denotes neighboring nodes. 

3.​ Continuum Limit: In the limit where the lattice spacing becomes infinitesimal, the 
discrete index k is replaced by continuous coordinates x^a. The field Ψ^μ(λ) becomes a 
spacetime field Ψ^μ(x^a, λ). The sum over neighbors becomes an integral over spatial 
gradients:​
L → ∫ d³x [ (1/2)(∂_λΨ^μ)(∂_λΨ_μ) - (κ/2) (∂_iΨ^μ)(∂_iΨ_μ) - (1/2) ω² Ψ^μ Ψ_μ ]. 

4.​ Absorption of λ: Finally, to make the theory covariant in the emergent 4D manifold, the 
parameter λ must be absorbed. This is achieved by reinterpreting the gradient terms to 
include derivatives with respect to a new, fourth coordinate, promoting λ to x⁰. The 
Lagrangian density then becomes a true field-theoretic one, governing a field Ψ^μ(x^ν) 
in an emergent spacetime:​
ℒ = (1/2) g^{αβ}(x) ∂_α Ψ^μ ∂_β Ψ_μ - (1/2) ω² Ψ^μ Ψ_μ,​
where g^{αβ} is the emergent inverse metric. 

Thus, the simple covariant oscillator is not just an equivalent model; it is the natural seed from 
which a local, interacting field theory—and hence a dynamical spacetime geometry—can grow 
through the principles of discretization, coupling, and continuum limit. 
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Euler–Lagrange Dynamics: Phase-Locked 
Oscillations of Space and Time 

Derivation of the Covariant Oscillator Equation 

From the Lagrangian formalism presented in Section 5, we derive the fundamental equations of 
motion for the state vector Ψ^μ(λ). The Lagrangian density for the covariant harmonic oscillator 
is: 

L = (1/2) η_{μν} (dΨ^μ/dλ)(dΨ^ν/dλ) - (1/2) ω² η_{μν} Ψ^μ Ψ^ν. 

Applying the Euler–Lagrange equation, 

d/dλ (∂L/∂(dΨ^μ/dλ)) - ∂L/∂Ψ^μ = 0, 

yields the equation of motion for each component μ: 

d²Ψ^μ/dλ² + ω² Ψ^μ = 0. 

This is a set of four decoupled harmonic oscillator equations, one for each component of the 
state vector (T, S¹, S², S³). Crucially, the signature of the Minkowski metric η_{μν} does not affect 
the form of this differential equation; it enters through the conserved quantities and the norm 
constraint. The parameter ω, with dimensions of frequency, is the fundamental constant of the 
theory, setting the scale for all dynamical evolution in the parameter λ. This equation is the core 
dynamical law, describing how the state vector rotates and oscillates within its internal 
Minkowski space. 

General Solution and the Orthogonality Condition 

The general solution to this second-order linear differential equation is a superposition of sine 
and cosine functions: 

Ψ^μ(λ) = A^μ cos(ωλ) + B^μ sin(ωλ), 

where A^μ and B^μ are constant four-vectors representing the amplitudes of the oscillatory 
modes. This solution describes an elliptical trajectory in the 4D state space projected onto each 
(A^μ, B^μ) plane. 

However, not all choices of A^μ and B^μ are dynamically admissible. The solution must satisfy 
the conservation of the Minkowski norm Q = η_{μν} Ψ^μ Ψ^ν, which is a constant of motion 
derived from the symmetry of the Lagrangian. Substituting the general solution into Q gives: 

Q = η_{μν} [A^μ cos(ωλ) + B^μ sin(ωλ)][A^ν cos(ωλ) + B^ν sin(ωλ)]​
= η_{μν} A^μ A^ν cos²(ωλ) + η_{μν} B^μ B^ν sin²(ωλ) + 2 η_{μν} A^μ B^ν cos(ωλ) sin(ωλ). 
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For Q to be constant for all values of λ, the coefficients of the time-dependent terms must 
vanish. This imposes two independent conditions on the amplitude vectors: 

1.​ η_{μν} A^μ A^ν = η_{μν} B^μ B^ν = Q₀, (equal magnitudes) 

2.​ η_{μν} A^μ B^ν = 0. (orthogonality in the Minkowski sense) 

The second condition, η_{μν} A^μ B^ν = 0, is of paramount physical importance. It states that 
the amplitude vectors A and B must be orthogonal with respect to the Minkowski metric. In the 
internal state space, this is not a Euclidean orthogonality but a relativistic one. This condition is 
the mathematical embodiment of the phase relationship between the oscillatory components of 
the state vector. 

Physical Interpretation: Space-Time Counterphase Oscillation 

Let us analyze the implications of the orthogonality condition η_{μν} A^μ B^ν = 0. Writing the 
vectors in component form, A^μ = (A⁰, A) and B^μ = (B⁰, B), where A and B are 3-vectors, the 
condition expands to: 

-A⁰ B⁰ + A · B = 0, or equivalently, A · B = A⁰ B⁰. 

Now, consider a simple, fundamental mode that realizes the anti-parallelism axiom of Section 4. 
We choose coordinates such that the oscillation is confined to the (Ψ⁰, Ψ¹) plane. Let the 
amplitude vectors be:​
A^μ = (R, 0, 0, 0) and B^μ = (0, R, 0, 0). 

These vectors satisfy η_{μν} A^μ B^ν = 0 trivially. The resulting state vector evolution is: 

T(λ) = Ψ⁰(λ) = R cos(ωλ),​
S¹(λ) = Ψ¹(λ) = R sin(ωλ),​
S² = S³ = 0. 

In this solution, the temporal component T(λ) and the primary spatial component S¹(λ) oscillate 
in quadrature—they are 90 degrees out of phase. When T is at a maximum or minimum 
(cos(ωλ) = ±1), S¹ is zero (sin(ωλ) = 0). Conversely, when S¹ is at an extremum, T is zero. Their 
oscillations are perfectly phase-shifted. 

To achieve strict anti-parallelism (S = -n̂ T) as an instantaneous condition, we would need a 
solution like T(λ) = R cos(ωλ) and S¹(λ) = -R cos(ωλ). This would correspond to A^μ = (R, 0, 0, 
0) and B^μ = (0, -R, 0, 0), which does not satisfy η_{μν} A^μ B^ν = 0 (since A·B=0 but A⁰B⁰=0, 
so the condition holds only if R=0). Therefore, the rigid, instantaneous anti-parallelism is not a 
solution of the free oscillator equations. Instead, the orthogonal amplitude condition enforces a 
dynamical relationship where space and time components oscillate out of phase, with their 
instantaneous magnitudes related such that the Minkowski norm is preserved. The rigid 
anti-parallelism can be interpreted as an averaged or dressed state of this more fundamental 
oscillatory motion, a point of view reminiscent of the "stitching" of classical trajectories from 
underlying oscillatory dynamics (Elze, 2012). 
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Conserved Charges and Lorentz Algebra 

The Lagrangian possesses global internal Lorentz invariance. According to Noether's theorem, 
this implies the existence of conserved charges. For the solution Ψ^μ(λ) = A^μ cos(ωλ) + B^μ 
sin(ωλ), the conserved angular momentum tensor in state space is: 

J^{μν} = Ψ^μ (dΨ^ν/dλ) - Ψ^ν (dΨ^μ/dλ). 

Substituting the solution and averaging over a period of oscillation (or using the amplitude 
vectors directly), one finds that the conserved charges are proportional to: 

J^{μν} ∝ A^μ B^ν - A^ν B^μ. 

The orthogonality condition η_{μν} A^μ B^ν = 0 ensures that this tensor is simple and 
non-degenerate. For the example solution with A^μ = (R,0,0,0) and B^μ = (0,R,0,0), the only 
non-zero component is J^{01} = R²ω, which is the generator of boosts in the internal (0,1) plane. 
This demonstrates that the specific phase-locked oscillation between T and S¹ corresponds to a 
constant "internal boost" charge. Different phase relationships and orientations of the amplitude 
vectors correspond to different conserved Lorentz charges (rotations or boosts), forming a 
representation of the Lorentz algebra. This directly links the kinematical oscillation of the state 
vector to the generators of spacetime symmetries, foreshadowing how the algebra of these 
internal charges may give rise to the Poincaré algebra of an emergent spacetime (Wess & 
Bagger, 1992). 

In conclusion, the Euler–Lagrange equations for the covariant oscillator yield solutions where 
space and time components are forced into a specific phase relationship by the norm 
conservation constraint. This phase-locked oscillation, characterized by Minkowski-orthogonal 
amplitude vectors, is the primary dynamical manifestation of the theory's axioms. It represents a 
perpetual, harmonic exchange between what we interpret as temporal and spatial aspects of the 
state, providing a dynamical proto-concept of "passage" and "extension" from which the 
geometry of spacetime can be constructed in the field-theoretic limit. 

Connection to Relativistic Mechanics: Mass as a 
Geometrical Parameter 

Identification with Physical Coordinates 

The formalism developed thus far has treated the components of the state vector Ψ^μ = (T, S^i) 
as abstract coordinates in an internal Minkowski space. To establish a concrete bridge with 
established physics, we now posit a fundamental identification. We propose that, upon a 
suitable choice of units and scaling, these abstract components correspond directly to the 
coordinates of physical spacetime. Specifically, we make the connection: 

Ψ^μ ≡ (c t(λ), x^i(λ)). 
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Here, t is the physical time coordinate, x^i are the three spatial coordinates, c is the speed of 
light (a fundamental constant that now emerges as the conversion factor between the temporal 
scale of the state vector and measured time), and λ is the worldline parameter. This is a pivotal 
step: it is a physical hypothesis that the dynamics of the conserved state vector, which until now 
described an abstract internal rotation, is in fact the fundamental description of the trajectory of 
a physical object in 4D spacetime. This identification is not ad hoc but is strongly motivated by 
the identical mathematical structure of the theories, a point emphasized in studies of the 
geometric formulation of mechanics (Rovelli, 2004). 

Under this identification, the conserved Minkowski norm of the state vector takes on an 
immediate and familiar physical meaning. The invariant quantity becomes: 

Q = η_{μν} Ψ^μ Ψ^ν = -(c t)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2 = -c² t² + x². 

This is precisely the invariant spacetime interval of special relativity, up to a sign convention. 
The conservation law η_{μν} Ψ^μ Ψ^ν = constant now states that the particle's worldline is 
confined to a hyperboloid of constant spacetime interval from the origin, which for a massive 
particle is a timelike hyperbola. 

Recovery of the Standard Relativistic Particle Action 

Let us examine the core Lagrangian L₀ from Section 3 under this new identification. It becomes: 

L₀ = -α √( - η_{μν} (dΨ^μ/dλ)(dΨ^ν/dλ) ) = -α √( c² (dt/dλ)² - (dx/dλ)·(dx/dλ) ). 

We can manipulate this expression by factoring out (dt/dλ)²: 

L₀ = -α (dt/dλ) √( c² - (dx/dt)² ) = -α c (dt/dλ) √( 1 - (v²/c²) ), 

where v = dx/dt is the coordinate 3-velocity. The action S = ∫ L₀ dλ is invariant under 
reparametrization. We are free to choose the parameter λ that is most convenient. The standard 
choice is to take λ to be the physical time t itself (i.e., λ = t). With this gauge choice, dt/dλ = 1, 
and the Lagrangian simplifies to: 

L₀(t) = -α c √(1 - v²/c²). 

The corresponding action is S = ∫ L₀(t) dt = -α c ∫ √(1 - v²/c²) dt. 

To match the well-known action for a free relativistic massive particle, we require the constant α 
to be: 

α = m c, 

where m is the inertial mass of the particle. With this identification, the action becomes exactly 
the Einstein-Infeld-Hoffmann action: 

S = -m c² ∫ √(1 - v²/c²) dt. 
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In its more covariant form, using the proper time dτ = dt √(1 - v²/c²), this is: 

S = -m c² ∫ dτ = -m c ∫ ds, 

where ds = c dτ is the line element of spacetime. This establishes a complete formal 
equivalence: the action derived from the dynamics of a conserved state vector is identical to the 
action for a free relativistic point particle (Landau & Lifshitz, 1975). The constant of motion Q = 
η_{μν} Ψ^μ Ψ^ν is now related to the mass shell condition. From the particle perspective, the 
canonical momenta p_μ = ∂L/∂(dΨ^μ/dλ) satisfy η^{μν} p_μ p_ν = -m² c², which is the standard 
relativistic dispersion relation. 

Mass as a Parameter of State-Space Rotation 

This correspondence reveals a profound reinterpretation of the concept of mass. In the state 
vector formalism, the fundamental constant is the frequency ω (from the oscillator formulation) 
or the scale parameter α = m c. Mass m is not an independent property added to an otherwise 
massless entity. Instead, it emerges as a geometric parameter that characterizes the scale and 
nature of the rotation in state space. 

Recall the oscillator solution: Ψ^μ(λ) = A^μ cos(ωλ) + B^μ sin(ωλ). The orthogonality condition 
η_{μν} A^μ B^ν = 0 and the constant norm condition η_{μν} A^μ A^ν = η_{μν} B^μ B^ν = Q₀ 
define the amplitude of this rotation. The frequency ω is related to the mass via the constant α. 
In the oscillator picture (Section 5), we had L = (1/2) η_{μν} Ψ̇^μ Ψ̇^ν - (1/2) ω² η_{μν} Ψ^μ Ψ^ν. 
The corresponding Hamiltonian constraint in the particle gauge leads to the identification ω ~ m 
c² / ħ, which is the Compton frequency. This suggests that the mass m is inversely proportional 
to the period of the fundamental oscillation in state space: a larger mass corresponds to a 
higher frequency, more "energetic" rotation in the internal space. 

Therefore, an object with mass is not simply a static point in spacetime; it is an entity 
undergoing a perpetual, cyclic evolution in its fundamental state space. Its inertia (resistance to 
acceleration) can be viewed as a manifestation of the stability of this rotational mode. This 
perspective resonates with older ideas of "zitterbewegung" in electron theory and more modern 
concepts of mass generation through cyclical motion in extra dimensions or internal spaces 
(Hestenes, 1990; Pavšič, 2001). The rest energy E = m c² can be interpreted as the energy 
scale associated with this inherent dynamical activity. 

Implications for the Field-Theoretic Limit 

The identification Ψ^μ ≡ (c t, x) for a single worldline is the first step towards a full field theory. If 
a single particle's trajectory is described by the rotation of its own state vector, then a system of 
many particles or a continuum would be described by a field of such state vectors, Ψ^μ(x^ν). 
This creates a conceptual tension: the field Ψ^μ is now a function of the very coordinates (x^ν) 
that are supposed to be its components. This self-referential structure is the hallmark of 
emergent geometry. 
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The resolution is to view the identification Ψ^μ(x) not as a function from spacetime to itself, but 
as a map from a base manifold (with coordinates x^ν) to an internal target space. In the simplest 
case, this map can be trivial (Ψ^μ(x) = δ^μ_ν x^ν), which corresponds to a flat spacetime. 
Dynamical distortions of this map, where Ψ^μ(x) deviates from a linear function, would then 
represent curvature and gravity. The action for the field Ψ^μ(x), constructed to be covariant in 
the base manifold, would generalize the particle action S = -m c ∫ ds. This leads naturally to 
actions of the form: 

S[Ψ] = -Λ ∫ d⁴x √( - det( η_{μν} ∂_α Ψ^μ ∂_β Ψ^ν ) ), 

which is a Dirac-Born-Infeld type action, a structure known to appear in brane-world scenarios 
where spacetime itself is a dynamical hypersurface embedded in a higher-dimensional space 
(Gibbons, 1998). In this grand picture, the mass m of a particle in the effective 4D theory arises 
from the tension of the worldsheet/brane and the frequency of its fluctuations, directly 
generalizing the idea of mass as a rotational parameter from the single worldline to the field. 

Thus, the link to relativistic mechanics is not merely a consistency check; it is the gateway 
through which the abstract dynamics of a conserved state vector transmutes into the familiar 
physics of spacetime and matter, with mass emerging as a fundamental geometric charge. 

Physical Interpretation: A Synoptic View 
The formalism developed in the previous sections, which derives from the simple axioms of a 
conserved norm and anti-parallelism, offers a radical reinterpretation of fundamental physical 
concepts. Rather than being primitive, spacetime coordinates, mass, energy, and motion 
emerge as derived, phenomenological descriptions of a more fundamental dynamics occurring 
in an abstract state space. This section provides a concise synopsis of this physical 
interpretation. 

Mass as the Frequency of Internal Rotation 

In the covariant oscillator formulation, the fundamental equation is d²Ψ^μ/dλ² + ω² Ψ^μ = 0. The 
constant ω has dimensions of frequency. Upon identifying the state vector with spacetime 
coordinates and matching the action to that of a relativistic particle, we find the relation α = m c, 
where α is the proportionality constant in the Lagrangian. In the oscillator picture, this leads to 
the identification: 

ω ∼ m c² / ħ. 

This is the Compton frequency of a particle. Consequently, we interpret mass as the frequency 
of the inherent rotation of the state vector in its internal Minkowski space. A massive particle is 
not an inert lump; it is a dynamical entity undergoing a perpetual, cyclical evolution. The higher 
the mass, the faster this internal "clock" ticks. This resonates with the concept of mass as a 
measure of an object's intrinsic dynamical activity, a perspective found in models linking inertia 
to fundamental quantum fluctuations or zitterbewegung (Hestenes, 1990). A massless particle 
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(ω=0) would correspond to a non-oscillatory, linear trajectory in state space, consistent with its 
null geodesic behavior in spacetime. 

Energy as the Rate of State-Space Traversal 

In the particle picture, the Hamiltonian derived from the Lagrangian L₀ is a constant of motion. 
For the simple solution Ψ^μ(λ) = A^μ cos(ωλ) + B^μ sin(ωλ), the "energy" conjugate to the 
parameter λ is proportional to ω² η_{μν} A^μ A^ν. When we fix the gauge λ = t (coordinate time), 
the conserved quantity becomes the relativistic energy E = γ m c², where γ = 1/√(1 - v²/c²). 

From the state-space perspective, this energy is not primary. Instead, it reflects the rate at which 
the system's state evolves along its trajectory in the state space. In the gauge λ = t, the speed of 
evolution is dΨ/dλ. The Lorentz factor γ amplifies this rate for a moving particle. Thus, the 
relativistic energy E is a measure of the "speed" of the internal dynamical process relative to the 
coordinate time t. This aligns with the idea that energy characterizes the capacity for change. In 
a cosmological or gravitational context, where the relationship between λ and t can vary, this 
interpretation suggests that energy is an emergent, observer-dependent quantity that gauges 
the local "tempo" of the fundamental state evolution (Rovelli, 1991). 

Motion as a Tilt in State-Space Trajectory 

Consider two fundamental solutions in state space: 

1.​ At "rest": T(λ) = R cos(ωλ), S¹(λ) = R sin(ωλ), S²=S³=0. 

2.​ In "motion": A solution where the oscillation ellipse is tilted in the (T, S¹) plane, or 
involves a phase shift between more components. 

The first solution, when projected onto spacetime via Ψ^μ = (c t, x), gives x¹(t) = (R/c) sin(ω t) 
for small v/c, an oscillatory motion around a mean position. For a pure boost, the solution is a 
hyperbolic trajectory: T(λ) = R sinh(κλ), S¹(λ) = R cosh(κλ). Upon gauge-fixing, this yields 
uniform coordinate velocity v = c tanh(κλ). 

Therefore, physical motion in 3D space is interpreted as a specific tilt or orientation of the 
elliptical/hyperbolic trajectory in the higher-dimensional state space. A state of rest corresponds 
to a trajectory that is "upright" with respect to the T-axis, while uniform velocity corresponds to a 
Lorentz-boosted (tilted) version of that trajectory. Accelerated motion corresponds to a trajectory 
that is not a simple geodesic (straight line or hyperbola) in the state space. This geometric view 
of motion is reminiscent of the "worldline geometry" perspective in relativity but elevates it to a 
dynamics in a space of states, not just events (Bohm, 1993). 

The Arrow of Time as a Choice of Orientation 

The fundamental dynamical equation, d²Ψ^μ/dλ² + ω² Ψ^μ = 0, is time-reversal symmetric with 
respect to the parameter λ. Its general solution is a linear combination of exp(+iωλ) and 
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exp(-iωλ), or sine and cosine. The choice of a specific phase for the oscillation (e.g., T(λ) = R 
cos(ωλ) rather than T(λ) = R cos(ωλ + π)) represents a choice of initial condition. 

When we identify T with c t, this phase choice becomes critical. A solution where T(λ) increases 
monotonically with λ (e.g., the hyperbolic sine/cosine solution for a timelike norm) defines a 
direction of evolution in the state space. This chosen orientation, once mapped to the physical 
time coordinate t, manifests as the psychological or thermodynamic arrow of time. The 
fundamental theory itself is symmetric; the arrow arises from the specific, low-entropy boundary 
condition that selects one orientation of the state vector's evolution as "future" (Penrose, 1979). 
In this view, the flow of time is not a property of spacetime itself but a macroscopic, emergent 
property of a particular solution to the underlying state-vector dynamics, characterized by a 
global correlation (phase coherence) in the evolution of its components. 

Synthesis: From State Space to Spacetime Phenomenology 

The proposed interpretation synthesizes as follows: 

●​ The universe is described by a field Ψ^μ(x^ν), a map from an abstract base manifold to 
an internal Minkowski space. 

●​ A localized particle is a solitonic excitation or a coherent mode of this field, where Ψ^μ 
executes a localized, cyclical motion. 

●​ The mass (m) of the particle is the frequency (ω) of this cycle. 

●​ Its energy-momentum is the current associated with the translation of this cycle in the 
base manifold. 

●​ Its worldline in physical spacetime is the shadow (projection) of its higher-dimensional 
trajectory in the field configuration space. 

●​ The spacetime metric g_{αβ}(x) is an effective, induced metric derived from the "stretch" 
of the field map: g_{αβ} = η_{μν} ∂Ψ^μ/∂x^α ∂Ψ^ν/∂x^β. 

●​ Gravity arises as the dynamics of this induced metric when the field Ψ^μ(x) deviates 
from a trivial, flat embedding. 

This framework unifies mechanics and geometry. It suggests that what we perceive as a 
persistent object moving through time is, at a fundamental level, a stable, rotating pattern in a 
field. The constancy of the speed of light c is the conversion factor between the scale of the 
internal rotation (in state-space "meters") and the measured spacetime intervals. This approach 
shares philosophical underpinnings with process-oriented interpretations of physics and with 
modern approaches to emergent gravity, such as the "geometrogenesis" of condensed matter 
analogs (Volovik, 2009) and certain formulations of string theory/M-theory where particles are 
vibrating strings and spacetime is a derived concept. 
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In conclusion, the conserved state vector paradigm offers a coherent and minimalist narrative: 
spacetime, matter, and their dynamics are not separately postulated but are intertwined 
manifestations of the self-consistency and conservation properties of a single fundamental field. 

Canonical Formulation and Conclusions 

The Canonical Statement of the Theory 

The theoretical framework developed in this work can be summarized by the following core, 
canonical statement: 

The dynamics of physical space and time are described by an invariant-norm Lagrangian of a 
fundamental state vector; physical evolution corresponds to the Lorentz-rotation of this vector 
under strict conservation of its Minkowski modulus, with spatial and temporal components 
manifesting as anti-parallel projections in the state space. 

This statement encapsulates the foundational principles, the mathematical structure, and the 
proposed physical interpretation. It signifies a departure from the conventional view of 
spacetime as a pre-existing arena, proposing instead that spacetime relations and the dynamics 
within them are dual manifestations of a more fundamental, algebraic conservation law 
governing an abstract state vector. This paradigm aligns with broader research programs that 
seek the origins of geometry in algebraic or informational constraints (Smolin, 2004). 

The Mathematical Core: Lagrangian and Symmetries 

Mathematically, the theory is anchored in a minimal Lagrangian density. In its most symmetric 
and fundamental oscillator form, it is expressed as: 

ℒ = (1/2) η_{μν} (dΨ^μ/dλ)(dΨ^ν/dλ) - (1/2) ω² η_{μν} Ψ^μ Ψ^ν. 

In its worldline-geometric form, equivalent for timelike trajectories, it is: 

ℒ = -m c √( - η_{μν} (dΨ^μ/dλ)(dΨ^ν/dλ) ). 

Both formulations enforce the conservation of the norm Q = η_{μν} Ψ^μ Ψ^ν. The first does so 
through a quadratic potential, making the norm's conservation a consequence of the equations 
of motion. The second does so through its reparametrization invariance and the associated 
constraint structure (Henneaux & Teitelboim, 1992). 

The theory possesses two paramount symmetries: 

1.​ Global Internal Lorentz Invariance: Ψ^μ → Λ^μ_ν Ψ^ν, with Λ ∈ SO(1,3). This is the 
symmetry of the "kinetic" and "potential" terms and reflects the rotational nature of 
dynamics in state space. 
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2.​ Reparametrization Invariance (for the square-root form): λ → f(λ). This 
one-dimensional diffeomorphism invariance signifies that the bookkeeping parameter λ 
has no intrinsic physical meaning, foregrounding only the relational order of states. 

The canonical momenta are π_μ = ∂ℒ/∂(dΨ^μ/dλ), leading to a primary constraint in the 
square-root formulation: η^{μν} π_μ π_ν + m² c² = 0. This is the mass-shell condition, which 
upon quantization would yield a Klein-Gordon-like equation in the state space, not in spacetime. 
The anti-parallelism condition, S = -c n̂ T, can be implemented as a secondary constraint via 
Lagrange multipliers, further reducing the physical phase space and linking the internal 
orientation to observable kinematics. 

Physical Evolution as State-Space Rotation 

The core dynamical prediction is that the state vector Ψ^μ(λ) evolves not through translation in 
an external space, but through rotation (a Lorentz transformation) in its own internal space. The 
general solution to the equations of motion is of the form: 

Ψ^μ(λ) = M^μ_ν(ωλ) Ψ^ν(0), 

where M^μ_ν(ωλ) is an element of the Lorentz group dependent on the parameter λ and the 
characteristic frequency ω. For the oscillator, M represents a complex rotation; for the worldline, 
it is a hyperbolic rotation (boost). Physical processes—perceived as motion, energy transfer, or 
time evolution—are, in this view, specific sequences of these internal rotations. 

The identification of the state vector components with physical coordinates, Ψ^μ ≡ (c t, x), is the 
crucial "bridging rule" that maps this internal rotation to observable spacetime phenomena. 
Under this rule, a boost in the (Ψ⁰, Ψ¹) plane of state space translates directly into uniform 
rectilinear motion along the x¹-axis in physical spacetime. The constant speed of light c emerges 
as the conversion factor that equates a unit of "state-space length" in the temporal direction to a 
unit of measured time. 

Spatial and Temporal Components as Anti-Parallel Projections 

The anti-parallelism axiom posits a fixed, rigid relationship: S^i = -c n^i T. In the full dynamical 
theory, this is understood as a condition that holds for the fundamental mode of a stationary, 
massive object in its rest frame. More generally, the solutions show that spatial and temporal 
components are in a fixed phase relationship—quadrature for the free oscillator, strict 
anti-parallelism when constraints are applied. 

This implies that what we measure as space (extension) and time (duration) are not 
independent entities but are two anti-parallel projections of the same rotating state vector. A 
change in the temporal projection (ΔT) is always accompanied by a compensatory, anti-aligned 
change in the spatial projection (ΔS), such that the overall norm is preserved. This provides a 
novel perspective on the nature of spacetime intervals: the invariant interval ds² = -c² dt² + dx² is 
not a property of a background but a direct measure of the constant magnitude of the evolving 
state vector. This view resonates with the "3+1" decomposition of spacetime in general relativity, 
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where the lapse function and shift vector describe how the spatial hypersurface is "projected" 
forward in time, though here the origin is algebraic, not geometric (Arnowitt, Deser, & Misner, 
2008). 

Conclusions and Future Directions 

This article has outlined a program to derive the kinematics and, in prospect, the dynamics of 
spacetime from the principle of conservation applied to a fundamental state vector. The 
framework is minimal, covariant, and directly reflects its axiomatic foundations. Key 
achievements include: 

1.​ Deriving the action for a relativistic particle from the geometry of state-space rotation. 

2.​ Reinterpreting mass as the frequency of internal oscillation. 

3.​ Providing a geometric basis for the phase relationship between space and time. 

4.​ Offering a unified interpretation of motion, energy, and the arrow of time. 

The path forward involves several critical research avenues: 

●​ Field-Theoretic Completion: The single worldline must be generalized to a field 
Ψ^μ(x^a). The primary candidate action is a Dirac-Born-Infeld type:​
S[Ψ] = -T ∫ d⁴x √( - det( η_{μν} ∂_α Ψ^μ ∂_β Ψ^ν ) ),​
whose perturbations may yield emergent gravitational dynamics (Gibbons, 1998). 

●​ Quantization: Applying canonical quantization to the constrained system will determine 
if the state-space Klein-Gordon equation yields sensible quantum mechanics and 
connects to the Hilbert space structure of standard quantum theory. 

●​ Coupling and Matter: Mechanisms to introduce interactions (gauge fields) and 
differentiate between various particle sectors (different masses, spins) must be 
developed, possibly through topological invariants or additional internal symmetries. 

●​ Connection to Quantum Gravity: The formalism's emphasis on a fundamental state 
vector and an emergent metric suggests potential links to approaches like loop quantum 
gravity (where geometry is quantized) and holographic principles (where dimensionality 
is not fundamental) (Rovelli, 2004). 

In essence, this work proposes that the seemingly disparate concepts of space, time, matter, 
and motion are unified in the elegant, rotating dance of a conserved state vector. The fabric of 
reality may be woven not from threads of spacetime, but from the invariant patterns of a deeper, 
simpler dynamics. 
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