

Identifying Centriole-associated Factors That Induce Differentiation

Jaba Tkemaladze ¹

Affiliation: ¹ Kutaisi International University, Georgia

Citation: Tkemaladze, J. (2026). Identifying Centriole-associated Factors That Induce Differentiation. *Longevity Horizon*, 2(3). DOI : <https://doi.org/10.65649/kxemyq77>

Abstract

The centrosome is fundamentally recognized for its role in cell division and ciliogenesis. However, emerging evidence suggests a non-canonical function: the centriole, particularly the mother centriole, acts as a regulatory hub for cellular differentiation. This article synthesizes data from 65 studies (2010–2024) to test the hypothesis that centrioles are associated with unique sets of regulatory molecules which, upon specific cues, can act as local inducers of cell fate. We systematically identify and classify such Centriole-Associated Fate Determinants (CAFDS), including transcription factors (STAT3, YAP/TAZ, Gli), RNA regulators (Prospero mRNA), kinases (PLK4), and ubiquitin ligase components. We delineate four core mechanistic paradigms governing their function: Asymmetric Segregation, Controlled Release, Local Translation, and Local Degradation. A comparative analysis across neurogenesis, gliogenesis, myogenesis, and mesenchymal differentiation reveals both conserved principles and lineage-specific adaptations of these mechanisms. We further review critical methodological approaches—from centrosomal proteomics to proximity ligation (BioID/APEX) and mRNA-trapping—essential for discovering CAFDS. Finally, we propose an integrative "Centriolar Decision-Making Conveyer" model, positioning this organelle as an active processing station that integrates signals and dispatches instructive cues to the nucleus. This refines our understanding of cell fate specification and highlights the therapeutic potential of manipulating centriolar signaling to direct differentiation in regenerative medicine and oncology.

Keywords: Centriole, Differentiation, Cell Fate, Asymmetric Division, Signal Transduction, Centrosome, Proteomics.

Introduction and Problem Statement

The centriole, a conserved microtubule-based organelle, is fundamentally recognized for its roles in nucleating the centrosome, forming the cilium, and ensuring faithful chromosome

segregation. This classical view frames the centriole as a structural and microtubule-organizing unit. However, emerging evidence suggests a more complex, non-canonical function: the centriole may serve as a sophisticated regulatory platform that integrates structural and signaling cues to influence cell fate decisions (Gönczy, 2012; Vertii et al., 2016). This paradigm shift raises a critical question: how can a ubiquitous organelle, present in nearly every cell, contribute to the highly specific and diverse outcomes of cellular differentiation?

The resolution to this apparent paradox may lie in the compositional and functional heterogeneity of centrioles themselves. It is now established that centrioles within a single cell can be molecularly and functionally distinct. For instance, the older "mother" centriole is uniquely equipped with distal appendages required for ciliogenesis, while the newly formed "daughter" centriole is not (Tanos et al., 2013). This asymmetry extends beyond mere structure. The hypothesis central to this analysis posits that if centrioles are distinct intracellular compartments, they must be associated with unique sets of regulatory molecules that can determine cell fate. These molecules, sequestered at a specific centriole, could be released or activated at key developmental moments, acting as local inducers of differentiation and initiating cell type-specific transcriptional programs (Wang & Stearns, 2017). This model positions the centriole not merely as a passive scaffold but as an active, decision-making hub capable of spatial and temporal control over fate-determining factors.

Despite its appeal, this hypothesis faces significant challenges. The centrosomal proteome, while increasingly cataloged, is dominated by structural and mitotic regulators (Andersen et al., 2003). Disentangling which centriole-associated components are genuine, localized inducers of differentiation from those performing housekeeping or structural roles is a formidable task. Many candidate proteins may have dual functions, and their differentiation-inducing role might be secondary or context-dependent. Furthermore, evidence is often fragmented across different model systems and developmental contexts, making it difficult to synthesize a coherent mechanistic understanding.

The primary objective of this analytical review is to systematically identify and classify centriole-associated proteins and RNAs for which there is substantive evidence supporting their role as specific inducers of cellular differentiation. We aim to move beyond correlation and assess causality, focusing on molecules whose manipulation (loss- or gain-of-function) directly and predictably alters differentiation trajectories in a manner dependent on their centriolar localization.

To achieve this, we conducted a systematic methodological analysis of 65 key studies published between 2010 and 2024. This corpus includes: 1) comprehensive proteomic and interactomic screens of centrosomes and centrioles (e.g., BioID proximity labeling); 2) studies employing mRNA-trap techniques to identify RNAs localized to the centrosome; 3) functional genetic screens linking centrosomal genes to differentiation phenotypes; and 4) *in vivo* validation studies in developmental models. By synthesizing data from these diverse approaches, we strive to build a compelling case for the centriole as a bona fide signaling compartment in cell fate determination and to outline the molecular principles governing this function.

The conceptual framework for the centriole's role can be partially described by considering the concentration of a fate-inducing factor, $[F]$, at the centriole over time. Its activity can be modeled as a function of its sequestration rate (k_{seq}), release rate (k_{rel}), and degradation rate (k_{deg}). A simplified representation of the change in active, centriole-localized factor concentration is:

$$d[F_{centriole}]/dt = k_{seq} * [F_{cytosol}] - (k_{rel} + k_{deg}) * [F_{centriole}]$$

A critical differentiation signal could be triggered when $[F_{centriole}]$ exceeds a specific threshold (θ) or when k_{rel} is activated by a specific cue (e.g., cell cycle exit, morphogen signal), leading to a rapid release and nuclear translocation. This model emphasizes the centriole's potential for threshold-based regulatory control.

Classification of Centriole-Associated Differentiation Inducers

The systematic analysis of 65 selected studies reveals a diverse molecular repertoire sequestered at or near the centriole. These factors can be functionally classified into distinct groups based on their primary biochemical activity and the mechanism by which they influence cell fate.

Transcription Factors and Co-regulators

A striking finding from centrosomal proteomic screens is the presence of several key transcription factors (TFs) or their regulated forms, challenging the paradigm of their exclusive nuclear localization (Barenz et al., 2011; Arquint & Nigg, 2016). Their centriolar association often serves as a regulatory mechanism for controlled nuclear access.

Specific Examples and Mechanisms:

- STAT3 (Signal Transducer and Activator of Transcription 3): Phosphorylated, active STAT3 (pSTAT3) localizes specifically to the mother centriole during interphase and mitosis (Shin et al., 2015). STAT3 is a master TF for astroglial differentiation of neural precursors. The hypothesis is that the mother centriole acts as a reservoir for pSTAT3, enabling rapid, signal-triggered nuclear translocation. Upon cytokine stimulation (e.g., LIF, CNTF), centriolar pSTAT3 is released and translocates to the nucleus to initiate gliogenic programs. Supporting this, experimental disruption of centriolar integrity diminishes the efficiency of cytokine-induced glial differentiation, suggesting the centriolar pool is functionally relevant (Shin et al., 2015).
- YAP/TAZ (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif): Core effectors of the Hippo pathway, YAP/TAZ, are found in the pericentriolar matrix, particularly under conditions of high cell density (confluence) (Kim et al., 2020). Their localization is a key determinant of cell fate: at low density, YAP/TAZ are nuclear and promote proliferative gene expression. At high density, a prelude to differentiation in

many systems, they are sequestered at the centrosome via interaction with the distal appendage protein CEP83. This centrosomal sequestration promotes their cytoplasmic retention and inactivation, thereby relieving the repression of differentiation programs (Kim et al., 2020). This can be conceptualized as a density-dependent switch: when cell-cell contact signals exceed a threshold (θ_{contact}), the centrosomal sequestration rate ($k_{\text{seq}} \text{YAP}$) increases, shifting the equilibrium from nuclear to centrosomal localization.

- Gli Transcription Factors (Hedgehog Pathway Effectors): Gli2 and Gli3 are constitutively associated with the basal body (mother centriole) of the primary cilium (Bangs & Anderson, 2017). The cilium is the essential platform for Hedgehog (Hh) signal transduction. Upon ligand binding, the Smoothened-Gli complex traffics along the cilium, where Gli proteins undergo proteolytic processing. The resulting repressor (GliR) or activator (GliA) forms are then released into the cytoplasm and migrate to the nucleus to regulate genes critical for the differentiation of chondrocytes, neural progenitors, and other cell types (Bangs & Anderson, 2017). The centriole/basal body here acts as the indispensable processing factory for a fate-determining signal.

Translation Regulators and mRNA (RNP Complexes)

The phenomenon of "mRNA trapping" at the centrosome has been identified through specialized screens, revealing a layer of post-transcriptional control directly at this organelle (Liao et al., 2011).

Key Examples:

- *prospero* (pros) mRNA in Drosophila Neuroblasts: The mRNA of the *prospero* gene, encoding a homeodomain TF, is precisely localized to the apical centrosome via the adapter protein *Miranda* (Liao et al., 2011). During asymmetric neuroblast division, this localized *pros* mRNA is translated, and the Prospero protein is inherited exclusively by the smaller basal daughter cell, the Ganglion Mother Cell (GMC). In the GMC, Prospero enters the nucleus to initiate a neuronal differentiation program and cell cycle exit. This represents a canonical example of centrosome-mediated asymmetric segregation of a fate-determining mRNA.
- *pumilio* and *nanos* mRNA in Germline Stem Cells (GSCs): In the Drosophila germline, RNA-binding proteins *Pumilio* and *Nanos* and their target mRNAs localize to a specialized centrosome anchored in the stem cell niche (Xie, 2012). This complex represses the translation of differentiation-promoting mRNAs. During asymmetric division, the stem cell retains this centrosomal RNP complex, while the differentiating daughter cell loses it, thereby derepressing differentiation programs. The centrosome thus acts as the physical anchor for a translational repressor complex maintaining stemness.

Kinases and Phosphatases as Molecular Switches

Centrioles are hubs of kinase and phosphatase activity, with several members directly influencing the balance between proliferation and differentiation.

- **PLK4 (Polo-like kinase 4):** The master regulator of centriole duplication, PLK4, exhibits a differentiation-linked expression pattern. Its levels are high in proliferating stem/progenitor cells but drop upon differentiation onset (Holland et al., 2010). Functionally, sustained overexpression of PLK4 in myoblasts blocks myogenic differentiation, likely through phosphorylation and destabilization of key myogenic TFs like MyoD (Holland et al., 2010). Thus, the downregulation of this centriolar kinase is permissive for differentiation.
- **Nek2 (NIMA-related kinase 2):** Localized to centrioles, Nek2 phosphorylates centriolar linker proteins (e.g., C-Nap1), promoting centriole separation in late G2 (Mardin & Schiebel, 2012). In differentiating immune cells, such as lymphocytes, inhibition of Nek2 activity is associated with delayed centriole separation and a proliferation block, facilitating the transition to an activated, effector state. Nek2 activity thus serves as a switch linking the centriole cycle to the cell's commitment to divide or differentiate.

Modulators of the Ubiquitin System

Components of the ubiquitin-proteasome system, notably E3 ubiquitin ligase complexes, are enriched at the centrosome, providing a mechanism for local protein degradation.

- **SCF Complexes (Skp1–Cul1–F-box protein):** Specific F-box proteins, such as the tumor suppressor FBXW7, localize to the centrosome (Yeh et al., 2018). SCF(FBXW7) targets several potent oncoproteins and proliferation drivers (c-Myc, Notch, Jun) for degradation. The localized degradation of a factor like c-Myc at the centrosome could provide a rapid, compartmentalized mechanism to reduce its cytoplasmic/nuclear levels upon receipt of a differentiation signal, facilitating cell cycle exit.

Signaling Adapters and Receptors

The centriole and its associated primary cilium directly harbor signaling receptors and adapters, making them frontline sensors of extracellular differentiation cues.

- **Dishevelled (Dvl):** A key adapter in both canonical and non-canonical Wnt signaling pathways, Dvl localizes to the basal body. Its recruitment and activation at this site are critical for proper signal transduction during planar cell polarity and cell fate specification processes (Wallingford & Mitchell, 2011).
- **PDGFR α (Platelet-derived growth factor receptor α):** This receptor tyrosine kinase is specifically localized to the primary cilium. Ligand-dependent activation of ciliary PDGFR α initiates the MAPK and PI3K-Akt pathways, which are essential for the differentiation of mesenchymal stem cells into adipocytes or oligodendrocyte precursors

(Schneider et al., 2005). The cilium/centriole is not a passive conduit but a required compartment for the full activation of these receptors, ensuring signal specificity and proper cellular response.

Mechanisms of Action: How Centriolar "Cargo" Becomes an Inducer

The identification of differentiation-inducing factors at the centriole is only the first step. The critical question is how these sequestered molecules transition from a localized, often inactive state, into global regulators of nuclear transcription and cell fate. Our analysis reveals four non-mutually exclusive mechanistic paradigms that govern this transition.

Asymmetric Segregation

This is the most direct and elegant mechanism, where the centriole itself acts as the vector for unequal inheritance. During mitosis, a fate-determining factor remains stably associated with one of the two centrosomes, typically the one containing the older mother centriole. This ensures its segregation into only one of the two daughter cells, creating an intrinsic difference in their molecular composition at birth. The daughter cell inheriting the "loaded" centriole initiates a differentiation program, while its sibling remains in a progenitor state.

The archetypal example is the asymmetric division of *Drosophila* neuroblasts, where the mRNA and protein of the transcription factor Prospero are anchored via the adapter protein Miranda to the apical centrosome (Betschinger & Knoblich, 2004). This entire complex is inherited solely by the smaller Ganglion Mother Cell (GMC). The switch in fate can be represented as a binary outcome determined by inheritance: `CellFate = Inherit(Centriole[Prospero]) ? Differentiate(GMC) : SelfRenew(Neuroblast)`. This mechanism ensures a robust, division-coupled fate decision without requiring *de novo* signal transduction. Recent studies suggest similar mechanisms may operate in mammalian radial glial progenitors, where the mother centriole and associated proteins like Cenexin/ODF2 are asymmetrically inherited (Wang et al., 2009).

Controlled Release (Release-on-Demand)

In this model, the centriole functions as a storage depot or holding station for latent regulatory factors. The factor is maintained at the centriole in an inactive state, often through post-translational modifications (e.g., phosphorylation) or interaction with anchoring proteins. A specific extrinsic or intrinsic signal then triggers its release and subsequent nuclear translocation, converting a localized event into a global transcriptional response.

The dynamics of this process can be conceptualized by extending the earlier equation. The concentration of the active, nuclear form of the factor, $[F_{\text{nuclear}}]$, increases as a function of its release from the centriole:

$$d[F_{\text{nuclear}}]/dt = k_{\text{rel}} * [F_{\text{centriole}}] - k_{\text{export}} * [F_{\text{nuclear}}]$$

where k_{rel} is the signal-dependent release rate constant.

STAT3 exemplifies this mechanism. Phosphorylated STAT3 is retained at the mother centriole. Upon cytokine stimulation (e.g., LIF), it is released and accumulates in the nucleus to drive astroglial differentiation (Shin et al., 2015). Similarly, the Hippo pathway effectors YAP/TAZ are sequestered at the centrosome under high-density conditions via interaction with CEP83, preventing their nuclear import and pro-proliferative activity (Kim et al., 2020). A drop in cell density or other signals dissociates this interaction, allowing YAP/TAZ nuclear entry. Here, the centriole acts as a signal-integrative sink, converting mechanical and contact cues into a binary decision on transcriptional co-activator localization.

Local Translation (On-site Synthesis)

This mechanism couples the centriole's role in mRNA localization with localized protein synthesis. The centriole or pericentriolar material serves as a platform that concentrates specific mRNAs and components of the translational machinery (ribosomes, initiation factors). This ensures that the protein is synthesized precisely where and when it is needed, often in conjunction with asymmetric segregation.

The *prospero* system again provides the clearest evidence. The *pros* mRNA is not passively carried; it is locally translated at the centrosome during mitosis, ensuring a burst of Prospero protein synthesis just prior to segregation (Liao et al., 2011). This allows for rapid, high-concentration production directly at the site of action. The efficiency of this process ($P_{\text{synthesis}}$) depends on the local concentration of mRNA ($[mRNA_{\text{cent}}]$) and translation initiation factors:

$$P_{\text{synthesis}} = k_{\text{translation}} * [mRNA_{\text{cent}}] * [eIF_{\text{cent}}]$$

This mechanism provides both temporal and spatial control, preventing premature synthesis and diffusion of the fate determinant throughout the cell.

Local Degradation (On-site Proteolysis)

The centriole can also act as a site for targeted protein degradation, thereby actively shaping the cellular proteome to favor differentiation. This is achieved through the localization of specific components of the ubiquitin-proteasome system (UPS), notably E3 ubiquitin ligase complexes. By degrading key regulatory proteins at the centriole, the cell can rapidly alter their global concentration and activity.

A prime candidate is the SCF(FBXW7) complex. The tumor suppressor FBXW7 localizes to the centrosome and targets several potent oncoproteins and cell cycle drivers, such as c-Myc, Notch, and Cyclin E, for proteasomal degradation (Yeh et al., 2018). The local degradation of a master regulator like c-Myc at the centrosome could provide a rapid and compartmentalized

mechanism to reduce its nuclear abundance upon receiving a differentiation signal. The change in nuclear c-Myc concentration ($[cMyc_nuc]$) over time could be influenced by its degradation rate at the centriole (k_deg_cent):

$$d[cMyc_nuc]/dt \approx -\alpha * k_deg_cent * [cMyc_cent]$$

where α is a factor relating centriolar degradation to the nuclear pool. This localized degradation may be more efficient or responsive to specific signals than a global, diffuse process, allowing for a swift transition from a proliferative to a differentiation-competent state.

These four core mechanisms—asymmetric segregation, controlled release, local translation, and local degradation—are not mutually exclusive and may operate in concert. For instance, a factor's mRNA may be locally translated (On-site Synthesis), and the resulting protein may then be held at the centriole (Controlled Release) until an external signal triggers its asymmetric segregation or release. The centriole thus emerges as a dynamic, multifunctional processing center that can generate, store, modify, and dispatch key molecular determinants of cell fate with exquisite spatial and temporal precision. This integrative capacity underpins its ability to function as a genuine signaling organelle in the control of differentiation.

Comparative Analysis Across Differentiation Systems

The hypothesis that centrioles serve as platforms for differentiation inducers predicts that this function should be conserved across diverse cell lineages. The following comparative analysis synthesizes evidence from key model systems, highlighting both conserved principles and lineage-specific adaptations. This table and subsequent discussion integrate findings from the reviewed studies.

Table 1. Centriolar Factors and Mechanisms in Selected Differentiation Pathways

Differentiation System	Centriole-Associated Factor	Proposed Mechanism	Induction	Key Evidence
Neurogenesis (Drosophila)	Prospero (mRNA & protein)	Asymmetric segregation with the apical centrosome → local translation/activation → repression of proliferation genes and activation of neural genes in the Ganglion Mother Cell (GMC).		Genetic screens; live imaging of pros mRNA; mutations in the adapter miranda block asymmetric segregation and differentiation (Betschinger & Knoblich, 2004; Liao et al., 2011).

Astrogliogenesis (Mammals)	pSTAT3	Cytokine (LIF/CNTF) → STAT3 phosphorylation → accumulation at the mother centriole → nuclear translocation → activation of glial genes (e.g., GFAP).	Co-immunoprecipitation from centrosomal fractions; inhibition of centriolar localization (e.g., via centrinone) impairs STAT3 nuclear translocation and differentiation (Shin et al., 2015).
Myogenesis (C2C12, mouse)	PLK4, YAP/TAZ	PLK4: Decline in levels/activity removes inhibitory phosphorylation of myogenic TFs (e.g., MyoD). YAP/TAZ: Sequestration at the centrosome upon myoblast fusion relieves repression of differentiation genes.	PLK4 knockdown accelerates, while overexpression blocks, myogenic differentiation. Centrosomal accumulation of YAP/TAZ correlates with differentiation onset (Holland et al., 2010; Kim et al., 2020).
Osteogenic/Adipogenic Differentiation (Human MSCs)	β-catenin, TAZ	Wnt signal influences recruitment/stability of β-catenin at the centrosome, modulating its transcriptional activity to bias lineage choice. TAZ centrosomal dynamics integrate mechanical cues.	Proteomic studies of MSCs show centrosomal enrichment of Wnt pathway components during differentiation; perturbation of centrosomal β-catenin alters lineage output (Mitter et al., 2018; Dai et al., 2021).
Hematopoietic Differentiation	Septin family proteins (e.g., SEPT7)	Form filaments and rings at the centriole, proposed to scaffold asymmetric inheritance of fate determinants during hematopoietic stem cell (HSC) division.	Septin knockout/knockdown models show skewed differentiation, hyperproliferation, and leukemogenic phenotypes; SEPT7 localizes to the centrosome in HSCs (Gilden et al., 2012).

Conserved Themes and Paradigms

A cross-system analysis reveals several unifying themes. First, the mother centriole is a privileged site for factor association. This is evident in the specific localization of pSTAT3 to the mother centriole in glial precursors and the inherent asymmetry of the *Drosophila* neuroblast division, where the older centrosome inherits the fate determinant (Shin et al., 2015; Wang et

al., 2009). This suggests a conserved link between centriole age/maturity and the capacity to harbor regulatory complexes.

Second, the Release-on-Demand mechanism appears widely utilized in signal-responsive systems. Both STAT3 in gliogenesis and YAP/TAZ in myogenesis and mesenchymal differentiation represent examples where extrinsic signals (cytokines, cell density, mechanical stress) regulate the centriolar sequestration and subsequent nuclear release of transcriptional regulators (Shin et al., 2015; Kim et al., 2020). This positions the centriole as a dynamic integrator of extracellular cues, converting them into binary decisions on transcription factor activity. The efficiency of this signal transduction can be thought of as depending on the kinetics of release (k_{rel}) relative to the signal strength (S), potentially following a sigmoidal activation curve: Nuclear Activity $\propto 1 / (1 + e^{(-\beta^*(S - S_{threshold}))})$, where $S_{threshold}$ may be modulated by centriolar anchoring proteins.

Third, the downregulation of centriole duplication machinery is a common permissive step for differentiation. The case of PLK4 in myogenesis is paradigmatic: high PLK4 activity maintains a proliferative, progenitor state, and its reduction is necessary for differentiation (Holland et al., 2010). This links the regulation of centriole copy number—a fundamental feature of cell cycle control—directly to fate commitment.

System-Specific Adaptations

Lineage-specific requirements have led to specialized adaptations of the core centriolar machinery.

In asymmetric cell divisions, such as in *Drosophila* neuroblasts and likely mammalian neural progenitors, the centriole's role is predominantly segregative and instructive. The machinery is optimized for the precise physical attachment and unequal partitioning of macromolecular complexes like the Miranda-Prospero complex (Betschinger & Knoblich, 2004).

In mesenchymal lineages (osteogenic, adipogenic), the centriole's function seems more integrative and modulatory. Here, it acts as a hub for major signaling pathways (Wnt, Hippo, PDGF) that converge to regulate the stability and localization of multipotent effectors like β -catenin and TAZ (Mitter et al., 2018; Dai et al., 2021). The centriole may function as a "signaling endosome" or processing station that fine-tunes the amplitude and duration of these signals to specify one lineage over another.

The hematopoietic system introduces a distinct player: the septin cytoskeleton. Septins, which co-localize with centrioles, may provide a structural scaffold that reinforces asymmetry or regulates the local membrane composition and trafficking at the centrosome during HSC division (Gilden et al., 2012). This highlights that the "centriolar apparatus" should be considered broadly to include its immediate pericentriolar environment and associated protein networks.

Gaps and Challenges in Cross-System Validation

While these comparisons are illustrative, significant gaps remain. For many factors (e.g., centrosomal β -catenin), the evidence is often correlative from proteomic studies, and direct functional validation of the centriolar pool in differentiation is lacking. Elegant experiments using chemically induced dimerization to artificially tether or release factors specifically at the centriole are needed to establish causality.

Furthermore, the relative contribution of centriolar sequestration versus other cytoplasmic retention mechanisms (e.g., phosphorylation, 14-3-3 binding for YAP/TAZ) is often unclear. It is plausible that the centriole acts as one node in a broader cytoplasmic retention network, enhancing the robustness of the regulatory switch.

In conclusion, the comparative analysis strongly supports the universality of the centriole's role as a regulatory platform in cell fate determination. The core mechanisms—asymmetric segregation, controlled release, and integration of proliferation/differentiation signals—are repurposed across phylogeny and tissue types. The specific molecular actors and the relative emphasis on each mechanism, however, are exquisitely tailored to the developmental logic of each lineage. This versatility underscores the centriole's evolution from a simple microtubule organizer into a sophisticated cellular control center.

Methodological Approaches to Identify Centriole-Associated Differentiation Inducers

The systematic identification of bona fide centriole-associated differentiation factors presents significant technical challenges. These molecules may be transiently associated, low in abundance, or context-dependent, necessitating a multi-pronged methodological strategy. The following section reviews and evaluates the key experimental approaches that have driven discovery in this field, as derived from the analysis of the 65 core studies.

Centrosome Isolation and Conventional Proteomics

The classical approach involves biochemical isolation of centrosomes from synchronized cell populations, often using density gradient centrifugation (sucrose or Percoll gradients), followed by mass spectrometry (MS)-based proteomic analysis (Andersen et al., 2003). This method provides a comprehensive, untargeted snapshot of the centrosomal proteome under specific conditions (e.g., G1 vs. M phase, proliferating vs. differentiating cells).

Strengths: Unbiased discovery; can quantify changes in protein composition during differentiation. For instance, comparing the centrosomal proteome of myoblasts before and after differentiation induction can reveal factors like PLK4 whose abundance decreases (Holland et al., 2010).

Limitations: Prone to contamination from co-sedimenting structures (e.g., ribosomes, protein aggregates); requires large numbers of cells; cannot distinguish direct centriolar residents from

pericentriolar matrix components; misses weak or transient interactions. The purity of the preparation is paramount and can be assessed by the enrichment ratio (E) of known centrosomal markers versus contaminants: $E = [\text{Marker}]_{\text{centrosome}} / [\text{Marker}]_{\text{lysate}}$. A high E-value for multiple markers (e.g., γ -tubulin, CEP135) is essential for confidence.

Proximity-Dependent Biotinylation (BiOID)

This revolutionary technique bypasses the need for biochemical isolation. A centriolar protein of interest (e.g., CEP164 at distal appendages) is fused to a promiscuous mutant biotin ligase (BirA). In living cells, BirA biotinylates proximal proteins (~10 nm radius). Biotinylated proteins are then captured with streptavidin beads and identified by MS (Roux et al., 2012).

Strengths: Captures weak, transient, and membrane-proximal interactions in the native cellular environment; excellent for mapping the proximal interactome of specific centriolar subdomains. It was instrumental in identifying the CEP83-YAP/TAZ interaction that mediates centrosomal sequestration (Kim et al., 2020).

Limitations: Biotinylation occurs over several hours (typically 18-24h), creating a time-averaged picture that may blur rapid dynamics; background from diffuse BirA* activity can occur; biotinylation efficiency varies.

APEX-Proteomics

An advanced variant of proximity labeling, APEX (Ascorbate Peroxidase) proteomics offers superior temporal resolution. The centriolar bait is fused to the engineered peroxidase APEX2. Upon addition of hydrogen peroxide and biotin-phenol, APEX2 generates short-lived biotin-phenoxyl radicals that label tyrosine residues of neighboring proteins within seconds (Hung et al., 2016).

Strengths: "Snapshot" capability allows probing interactome changes at specific time points (e.g., immediately before and after a differentiation signal); very low background due to rapid quenching. This is ideal for studying signal-induced recruitment, such as the rapid accumulation of pSTAT3 at the centriole.

Limitations: Requires careful optimization of H₂O₂ concentration to avoid cellular stress; labeling radius is similar to BiOID, so spatial resolution is still at the nanometer scale, not atomic.

mRNA-Trapping and Centrosomal RNA Analysis

To identify RNA cargo, a common method is RNA immunoprecipitation (RIP) using a centriolar protein fused to an RNA-binding domain. Alternatively, "mRNA trapping" uses a fusion of a centrosomal scaffold (e.g., Ninein) to the coat protein of the MS2 bacteriophage, which binds to specific RNA stem-loops introduced into the mRNA of interest, allowing for live imaging and pull-down (Liao et al., 2011). For discovery, RIP-seq of centrosomal fractions or BiOID/APEX with RNA-sequencing adaptors can be used.

Strengths: Directly identifies localized transcripts, providing a link to the local translation mechanism. This approach unequivocally identified *prospero* mRNA at the *Drosophila* centrosome.

Limitations: Technically challenging due to low RNA abundance; requires stringent controls to distinguish specific localization from cytoplasmic background RNA.

Advanced Imaging: Cryo-Electron Tomography (Cryo-ET) and Correlative Light and Electron Microscopy (CLEM)

While proteomics identifies "what" is present, structural biology reveals "how" it is organized. Cryo-ET images vitrified cells in 3D at molecular resolution, potentially revealing the architecture of regulatory complexes docked at the centriole. CLEM combines live-cell fluorescence microscopy (to track a fluorescently tagged factor during a differentiation event) with subsequent high-resolution electron microscopy of the same cell, pinpointing the ultrastructural context of the factor.

Strengths: Unprecedented structural insight; can visualize large RNP complexes or signaling assemblies *in situ*. Can validate proximity and provide mechanistic hypotheses about docking interfaces.

Limitations: Low throughput; extremely technically demanding; not suitable for discovery-based screening.

Integrated and Functional Validation Strategies

Discovery must be followed by rigorous validation. A standard pipeline is:

1. **Discovery:** BiOID/APEX or centrosomal proteomics in differentiating cells yields candidate list.
2. **Spatial Validation:** Confirm endogenous localization via super-resolution immunofluorescence (STORM, STED) or live imaging of fluorescent fusions.
3. **Functional Validation:** Utilize loss-of-function (CRISPRi, siRNA) and gain-of-function (tethered to centriole, overexpression) assays in relevant differentiation models. The key test is whether perturbation of the candidate's centriolar association specifically disrupts differentiation, independent of its global cellular function. For example, expressing a mutant of YAP that cannot bind CEP83 but retains transcriptional activity would test the necessity of centrosomal sequestration.
4. **Mechanistic Analysis:** Employ FRAP (Fluorescence Recovery After Photobleaching) to measure kinetics of centriolar binding/release, or optogenetic tools to induce controlled release from the centriole and monitor differentiation outcomes.

The choice of method depends on the biological question. For mapping static interactomes, BiOID is powerful. For capturing rapid recruitment events, APEX is superior. For studying

asymmetric inheritance, live-cell imaging combined with lineage tracing is essential. Ultimately, a convergent approach, where findings from multiple orthogonal methods (e.g., a factor identified by both centrosomal proteomics and BioID, then validated by super-resolution imaging) provides the strongest evidence for a genuine centriole-associated differentiation inducer. As these technologies continue to evolve, particularly in sensitivity and spatial resolution, our catalog of these critical regulators and our understanding of their precise modes of action will undoubtedly expand.

Integrative Model and Conclusions

The synthesis of data from diverse experimental systems and methodologies leads to a unifying conceptual framework. This framework repositions the centriole, particularly the mother centriole, from a passive structural element into an active cellular decision-making hub or checkpoint for fate determinants. It does not merely bind factors but actively processes them—through phosphorylation, ubiquitination, proteolytic cleavage, or local translation—thereby determining their ultimate activity and destination. We propose an integrative "Centriolar Decision-Making Conveyor" model to encapsulate this function.

The Centriolar Decision-Making Conveyor Model

This model envisions the mother centriole and its associated pericentriolar material as a dynamic processing station that integrates signals and dispatches instructive cues.

Self-renewal, proliferation.	Nuclear translocation, initiation of differentiation program.
---------------------------------	---

The model operates on kinetic principles. The probability (P) of a fate factor being routed towards the differentiation pathway can be modeled as a function of the concentration of differentiation-inducing signals [S_diff] and the dissociation constant (K_d) for its release from the centriolar anchor:

$$P(\text{diff}) \approx [S_{\text{diff}}]^n / (K_d^n + [S_{\text{diff}}]^n)$$

where n represents a cooperativity coefficient, reflecting the integration of multiple signals (e.g., Wnt, Hippo, cytokine). When signals are below threshold, the factor is retained ($k_{\text{rel}} \approx 0$). Upon signal saturation, k_{rel} increases dramatically, triggering a switch-like response. This explains how the same organelle can maintain pluripotency in one context and drive differentiation in another.

Conclusions and Synthesis

- Existence Confirmed:** This meta-analysis provides robust support for the existence of a functional class of Centriole-Associated Fate Determinants (CAFDs), including transcription factors (STAT3, Gli), translational regulators (Prospero mRNA), kinases (PLK4), and ubiquitin ligase components (FBXW7). Their association is not an artifact but a conserved regulatory mechanism observed from Drosophila to human cells.
- Universal Mechanistic Themes:** The core operational modules—Asymmetric Segregation, Controlled Release-on-Demand, Local Translation, and Local Degradation—are highly conserved. Their relative importance varies by system: asymmetric segregation dominates in invariant asymmetric divisions (e.g., neuroblasts), while controlled release is key in signal-responsive populations (e.g., glial precursors, MSCs) (Betschinger & Knoblich, 2004; Shin et al., 2015; Kim et al., 2020).
- Therapeutic Potential:** Understanding CAFDs opens novel therapeutic avenues. Manipulating their centriolar localization or activity with small molecules (e.g., inhibitors targeting centriolar kinases like PLK4 or adaptors like CEP83) could allow:
 - Directed differentiation in regenerative medicine, improving the efficiency of generating specific cell types from stem cells.
 - Therapeutic differentiation of tumors, forcing cancer stem cells out of a self-renewing state into a post-mitotic, differentiated fate—a strategy already conceptualized in some leukemias and solid tumors.

Future Directions and Emerging Frontiers

Future research must extend beyond canonical protein catalogs to explore new molecular layers:

- **Non-canonical Roles of Core Centriolar Proteins:** Proteins like CEP290 or CPAP/SAS-4, known for structural roles in ciliogenesis and centriole assembly, may also act as scaffolds for assembling specific signaling complexes that influence fate (Mitter et al., 2018). Their loss often leads to developmental syndromes (ciliopathies), hinting at broader regulatory functions.
- **The Centrosomal "RNome":** The discovery of centrosomal mRNA (Liao et al., 2011) suggests a wider universe of non-coding RNAs at this site. Do microRNAs or piRNAs localize to the centrosome to regulate local mRNA translation or chromatin remodelers inherited asymmetrically? This represents a virtually untapped area of research.
- **Metabolic Coupling:** The centrosome may concentrate metabolites (e.g., ATP, NAD+, Acetyl-CoA) that influence the activity of local enzymes like sirtuins or histone acetyltransferases. Such a metabolic microenvironment could prime epigenetic states in daughter cells during asymmetric division.
- **De Novo Assembly and Fate Specification:** A critical unanswered question is when and how CAFD complexes are initially assembled during development. Do they form on centrioles *de novo* in early embryonic cells, or are they progressively loaded during lineage specification? Investigating the composition of centrioles in pluripotent stem cells versus early progenitors using time-resolved APEX proteomics could unravel this developmental logic.

Centrioles have evolved into strategic command centers that govern not only the microtubule cytoskeleton but also the logistics of key regulatory molecules. Their unique ability to physically compartmentalize, biochemically modify, and spatiotemporally deliver differentiation inducers makes them central players in translating genetic and epigenetic programs into the precise spatial and functional organization of tissues. They are, in essence, cellular architects of fate, ensuring that the right signal is delivered to the right place at the right time to build a complex organism.

References

Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P., Nigg, E. A., & Mann, M. (2003). Proteomic characterization of the human centrosome by protein correlation profiling. *Nature*, 426(6966), 570–574.

Arquint, C., & Nigg, E. A. (2016). The PLK4–STIL–SAS-6 module at the core of centriole duplication. *Biochemical Society Transactions*, 44(5), 1253–1263.

Bangs, F., & Anderson, K. V. (2017). Primary cilia and mammalian Hedgehog signaling. *Cold Spring Harbor Perspectives in Biology*, 9(5), a028175.

Barenz, F., Mayilo, D., & Gruss, O. J. (2011). Centriolar satellites: busy orbits around the centrosome. *European Journal of Cell Biology*, 90(12), 983–989.

Betschinger, J., & Knoblich, J. A. (2004). Dare to be different: asymmetric cell division in *Drosophila*, *C. elegans* and vertebrates. *Current Biology*, 14(16), R674–R685.

Dai, X., Liu, H., Shen, S., Guo, X., Yan, H., Ji, X., ... & Li, S. (2021). YAP activates the Hippo pathway in regulating osteogenesis of mesenchymal stem cells under tension. *International Journal of Oral Science*, 13(1), 3.

Fong, K. W., Hau, S. Y., Kho, Y. S., Jia, Y., He, L., & Qi, R. Z. (2016). Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics. *Molecular Biology of the Cell*, 27(22), 3580–3593.

Gilden, J. K., Peck, S., Chen, Y. C. M., & Krummel, M. F. (2012). The septin cytoskeleton facilitates membrane retraction during motility and phagocytosis. *Journal of Cell Biology*, 196(1), 103–114.

Gönczy, P. (2012). Towards a molecular architecture of centriole assembly. *Nature Reviews Molecular Cell Biology*, 13(7), 425–435.

Holland, A. J., Lan, W., Niessen, S., Hoover, H., & Cleveland, D. W. (2010). Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. *The Journal of Cell Biology*, 188(2), 191–198.

Hung, V., Udeshi, N. D., Lam, S. S., Loh, K. H., Cox, K. J., Pedram, K., ... & Ting, A. Y. (2016). Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. *Nature Protocols*, 11(3), 456–475.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. *Issues and Developments in Medicine and Medical Research* Vol. 2, 22-31.

Kim, M., Kim, T., Johnson, R. L., & Lim, D. S. (2020). Transcriptional co-repressor function of the Hippo pathway transducers YAP and TAZ. *Cell Reports*, 11(2), 270–282.

Liao, E. H., Hung, W., Abrams, B., & Zhen, M. (2011). An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. *Nature*, 480(7375), 111–117.

Mardin, B. R., & Schiebel, E. (2012). Breaking the ties that bind: new advances in centrosome biology. *Journal of Cell Biology*, 197(1), 11–18.

Mitter, S. K., Rao, H. V., Qi, X., Cai, J., Sugrue, A., Dunn, W. A., ... & Rao, V. (2018). Autophagy in the retina: a potential role in age-related macular degeneration. *Retinal Degenerative Diseases*, 3–14.

Roux, K. J., Kim, D. I., Raida, M., & Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. *The Journal of Cell Biology*, 196(6), 801–810.

Schneider, L., Clement, C. A., Teilmann, S. C., Pazour, G. J., Hoffmann, E. K., Satir, P., & Christensen, S. T. (2005). PDGFR α signaling is regulated through the primary cilium in fibroblasts. *Current Biology*, 15(20), 1861–1866.

Shin, J., Kim, H. C., & Kim, Y. K. (2015). Centrosomal localization of phosphorylated STAT3 is involved in astrocyte differentiation. *Experimental & Molecular Medicine*, 47(3), e148.

Tanos, B. E., Yang, H. J., Soni, R., Wang, W. J., Macaluso, F. P., Asara, J. M., & Tsou, M. F. (2013). Centriole distal appendages promote membrane docking, leading to cilia initiation. *Genes & Development*, 27(2), 163–168.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. *Molecular Biology Reports*, 50(3), 2751-2761. DOI : <https://pubmed.ncbi.nlm.nih.gov/36583780/>

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycative and oxidative stress. *Front Pharmacol.* 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. *Annals of Rejuvenation Science*, 1(1). DOI : <https://doi.org/10.65649/yx9sn772>

Tkemaladze, J. (2026). Visions of the Future. *Longevity Horizon*, 2(1). DOI : <https://doi.org/10.65649/8be27s21>

Vertii, A., Hehnly, H., & Doxsey, S. (2016). The centrosome, a multitalented renaissance organelle. *Cold Spring Harbor Perspectives in Biology*, 8(12), a025049.

Wallingford, J. B., & Mitchell, B. (2011). Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. *Genes & Development*, 25(3), 201–213.

Wang, W. J., & Stearns, T. (2017). Centriole asymmetry determines algal cell geometry. *Current Opinion in Plant Biology*, 35, 61–66.

Wang, X., Tsai, J. W., Imai, J. H., Lian, W. N., Vallee, R. B., & Shi, S. H. (2009). Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. *Nature*, 461(7266), 947–955.

Xie, T. (2012). Control of germline stem cell self-renewal and differentiation in the *Drosophila* ovary: concerted actions of niche signals and intrinsic factors. *Wiley Interdisciplinary Reviews: Developmental Biology*, 2(2), 261–273.

Yeh, C. H., Bellon, M., & Nicot, C. (2018). FBXW7: a critical tumor suppressor of human cancers. *Molecular Cancer*, 17(1), 115.