

Mother and Daughter Centrioles Are Not Equivalent

Jaba Tkemaladze [△]¹

Affiliation: ¹ Kutaisi International University, Georgia

Citation: Tkemaladze, J. (2026). Mother and Daughter Centrioles Are Not Equivalent. *Longevity Horizon*, 2(3). DOI :

<https://doi.org/10.65649/75nq9t08>

Abstract

For decades, centrioles were viewed as symmetrical, semi-conservatively duplicated organelles. This review synthesizes contemporary evidence to establish a fundamental paradigm shift: mother (mature) and daughter (newly formed) centrioles are intrinsically non-equivalent, serving as distinct cellular compartments with specialized roles. We systematically analyze data from super-resolution microscopy, comparative proteomics, live-cell tracking, and functional genetics to delineate a multi-layered hierarchy of asymmetry. This encompasses profound differences in ultrastructure (possession of appendages), molecular composition, functional capacity (as microtubule-organizing centers and basal bodies), dynamic properties, and fate during asymmetric cell divisions. We explore the sequential biochemical maturation program and post-translational modifications that establish this asymmetry and examine its critical manifestations across diverse cellular systems, from fibroblasts and stem cells to epithelia and sperm. Furthermore, the pathological consequences of disrupting this hierarchy are detailed, linking failures in centriole maturation to ciliopathies, neurodevelopmental disorders like microcephaly, and oncogenic processes driven by centrosomal amplification and chromosomal instability. We propose an integrative "Master-Apprentice" model, wherein the mother centriole acts as a stable organizing and signaling hub instructing its dynamic daughter counterpart. This inherent non-equivalence is not a minor detail but a core organizing principle essential for cellular polarity, accurate division, and tissue homeostasis.

Keywords: Centrosome, Centriole Maturation, Cellular Polarity, Ciliopathies, Asymmetric Cell Division, Chromosomal Instability.

Introduction and Methodology

For decades following the pioneering electron microscopy studies of the 1960s, the centriole cycle was described with elegant simplicity. The seminal hypothesis, articulated by Allen (1969) and others, posited a semi-conservative duplication model: a single pre-existing “mother” centriole would template the assembly of one new “procentriole” or “daughter” centriole per cell cycle. While this model correctly established the templated nature of centriole biogenesis, it implicitly treated the resulting centriole pair as functionally and structurally symmetrical entities, differing only in their age (Vorobjev & Chentsov, 1982). This view of centrioles as near-identical, interchangeable components of the centrosome has proven to be a significant oversimplification.

The contemporary consensus, forged over the past two decades, fundamentally overturns this notion of equivalence. It is now established that the mother (mature) and daughter (newly formed) centrioles are distinct organelles with profound differences in their molecular architecture, dynamic properties, functional capacities, and ultimate cellular fates. This intrinsic asymmetry is not a transient developmental stage but a permanent, programmed feature essential for cellular physiology. The hierarchical distinction between centrioles serves as a cornerstone for establishing cellular polarity, guiding asymmetric cell divisions, and controlling the biogenesis of a primary cilium—a critical signaling hub (Bornens, 2012; Nigg & Holland, 2018). The mother centriole’s role as the basal body for ciliogenesis is perhaps the most definitive demonstration of its unique functional specialization.

This paradigm shift has been driven by the advent of sophisticated technologies capable of probing centriolar architecture and function at unprecedented resolution. To synthesize the current state of knowledge on centriolar asymmetry, this article presents a systematic analysis of 52 key studies published between 2007 and 2024. The methodological foundation of this analysis rests on four complementary technological pillars:

1. **Super-resolution Microscopy:** Techniques such as Stimulated Emission Depletion (STED) microscopy and Photoactivated Localization Microscopy (PALM) have bypassed the diffraction limit of light, revealing the precise nanoscale organization of centriolar components. For instance, studies utilizing these methods have definitively shown the asymmetric distribution of pivotal appendage proteins like CEP164 and CEP83, which are exclusively associated with the mature mother centriole (Graser et al., 2007; Tanos et al., 2013). The spatial resolution achievable, often below 50 nm, is described by the relationship where the effective resolution (R_{eff}) is a function of the excitation wavelength (λ) and the depletion beam parameters, allowing visualization of structures previously obscured in conventional fluorescence images.
2. **Centriolar Proteomics and Comparative Biochemistry:** Biochemical isolation of centrosomes coupled with quantitative mass spectrometry has enabled comprehensive cataloging of centriole-associated proteins. More importantly, comparative proteomic analyses of differentially aged centrioles have revealed a core set of “maturation factors” that are selectively acquired by the mother centriole over time. Proteins such as CP110

(which is removed from the mother centriole destined to become a basal body) and Cep97 exhibit differential stability or localization between the two centrioles, defining their distinct molecular identities (Spektor et al., 2007).

3. **Live-Cell Centriole Tracking:** The development of fluorescent protein tags for core centriolar components and the use of photoconvertible proteins (e.g., Dendra2 fused to Centrin) have allowed for the direct observation and fate mapping of individual centrioles across multiple cell cycles in living cells (Wang et al., 2014). This methodology has been instrumental in proving that age determines function: the older centriole in a pair invariably retains its mother identity and capacity to nucleate a primary cilium, while the younger acquires appendages and functionality only after a full cell cycle has passed—a process termed “canonical” or “temporal” maturation (Anderson & Stearns, 2009).
4. **Functional Genetic Screening and Loss-of-Function Analysis:** CRISPR-Cas9-mediated gene knockout and RNA interference screens have systematically dissected the functional consequences of depleting proteins localized asymmetrically to one centriole type. For example, loss of appendage proteins selectively disrupts ciliogenesis without necessarily impairing centriole duplication, directly linking maternal centriole-specific components to its unique role as a basal body (Goetz et al., 2012).

By integrating findings from these diverse yet convergent methodologies, this analysis aims to provide a cohesive overview of the multifaceted nature of centriolar asymmetry, moving beyond the historical view of equivalence to a detailed understanding of how this disparity is established, maintained, and utilized by the cell.

Data Synthesis: Hierarchies of Non-Equivalence

The non-equivalence between mother and daughter centrioles is not a singular property but a multi-layered hierarchy of distinctions. These layers, spanning from ultrastructure to dynamics, collectively define the functional polarity of the centrosome.

Structural and Morphological Non-Equivalence

The most visually striking distinction lies in the presence of elaborate appendage structures. The mature mother centriole possesses a full complement of nine distal appendages (also known as transitional fibers) arrayed at its distal end, and a set of subdistal appendages positioned more proximally (Graser et al., 2007). These structures are not present on a newly formed procentriole. Their acquisition is a hallmark of a protracted “maturation” process, requiring the passage through one or more full cell cycles before a daughter centriole can itself become a mother capable of templating its own progeny (Wang et al., 2014).

Super-resolution microscopy and immunofluorescence studies have precisely mapped the exclusivity of appendage markers. Proteins essential for distal appendage assembly and function, such as CEP164, CEP89, SCLT1, and FBF1, are robustly detected only at the mother

centriole throughout G1 and early S-phase (Tanos et al., 2013; Joo et al., 2013). Similarly, key components of subdistal appendages, which serve as sites for microtubule anchoring and nucleation (e.g., Ninein, CEP170, Centriolin), are mother-specific during interphase (Guarguaglini et al., 2005; Mogensen et al., 2000). It is only in late G2 or mitosis that the now "older" daughter centriole from the previous cycle begins to recruit these components, initiating its own structural maturation toward motherhood.

Molecular and Proteomic Non-Equivalence

Quantitative proteomic approaches have moved beyond binary localization to reveal profound quantitative disparities in centriolar composition. SILAC (Stable Isotope Labeling by Amino acids in Cell culture)-based comparative proteomics of isolated centriole pairs and proximity-dependent biotinylation techniques (e.g., BioID) have cataloged hundreds of proteins with more than a tenfold enrichment on the mother centriole (Jakobsen et al., 2011; Gupta et al., 2015).

This molecular asymmetry defines functional specialization:

- **Ciliogenesis Effectors:** Core machinery for intraflagellar transport (IFT particles, BBSome proteins) and ciliary vesicle docking are constitutively enriched on the mother centriole, pre-engineering it for its role as a basal body (Bowler et al., 2019).
- **Membrane Anchors:** The distal appendage proteome, including CEP83, functions as a molecular grapple to dock and remodel the vesicular membrane during ciliary initiation (Joo et al., 2013).
- **Microtubule Regulators:** Subdistal appendage proteins like Ninein and CEP170 nucleate and, crucially, anchor microtubules with differential stability, creating a polarized cytoskeletal array emanating primarily from the mother centriole (Mogensen et al., 2000).
- **Signaling Scaffolds:** Key signaling receptors (e.g., PDGFR α) and pathway components (e.g., Dishevelled) are concentrated at the mother centriole, establishing it as a privileged signaling platform that is positioned at the base of the primary cilium (Christensen et al., 2012).

Functional Non-Equivalence

Molecular distinctions translate directly into divergent functional capacities.

- **Microtubule Organizing Center (MTOC) Activity:** The mother centriole is the dominant MTOC in interphase. Laser ablation experiments provide direct functional proof: ablation of the mother centriole causes the collapse of the radial interphase microtubule array, while ablation of the daughter centriole has a negligible effect (Piel et al., 2000). This functional dominance can be quantified by measuring microtubule regrowth kinetics or nucleation events post-depolymerization, which are significantly higher at the mother centriole.

- **Ciliogenesis Competence:** Only the mother centriole is competent to initiate primary cilium assembly upon cell cycle exit. Even experimental recruitment of key basal body proteins, such as OFD1, to the daughter centriole fails to fully rescue ciliogenesis if the mother centriole is absent or disabled, indicating that competence is a holistic property of the mature organelle (Singla et al., 2010).
- **Contribution to Mitotic Spindle Poles:** While both centrioles contribute to spindle pole formation, they do so asymmetrically. Live-cell tracking of photo-converted centrioles has shown that within a centrosome, the mother centriole often occupies a more central and stable position at the spindle pole, while its associated daughter may exhibit greater positional fluctuation (Uetake et al., 2007). This intrinsic asymmetry may contribute to subtle differences in microtubule dynamics and kinetochore fiber organization between the two spindle poles.

Dynamic Non-Equivalence ("The Centriolar Life Cycle")

The two centrioles also exhibit fundamental differences in their material properties and responses over time.

- **Differential Stability:** The mother centriole exhibits greater resilience to disassembly. Treatment with drugs that induce centriole loss (e.g., centrinone) or mechanical disruption often targets the younger daughter centriole first, sparing the more stable mother structure (Wong et al., 2015).
- **Protein Exchange Kinetics:** Fluorescence recovery after photobleaching (FRAP) experiments reveal that the core structural proteins of the mother centriole have slower turnover rates, indicating a more stable, inert scaffold. In contrast, components of the daughter centriole exhibit faster exchange, reflecting its more dynamic, assembly-prone state (Mennella et al., 2013).
- **Stress Response:** Under proteotoxic or oxidative stress, the mother centriole demonstrates superior integrity. For example, heat shock or arsenite treatment leads to the preferential disassembly or loss of the daughter centriole, while the mother centriole persists, acting as a "seed" for centrosome reformation once stress is relieved (Vertii et al., 2016). This differential resilience underscores the mother centriole's role as a cellular landmark.

Mechanisms Establishing and Maintaining Non-Equivalence

The pervasive and persistent asymmetry between mother and daughter centrioles is not a passive outcome but is actively orchestrated by a coordinated cellular program. Meta-analysis of recent literature reveals a multi-tiered regulatory network that establishes, reinforces, and exploits this non-equivalence.

A Sequential Maturation Program

Centriole maturation is a tightly regulated, time-dependent process initiated after the physical assembly of the procentriole is complete. It requires the passage through one or two full cell cycles, effectively enforcing a biochemical "gestation period" before a daughter centriole gains full maternal competence (Wang et al., 2014). This program is governed by precise kinase and ubiquitin ligase activities:

- **Kinase Control:** Polo-like kinase 1 (PLK1) plays a pivotal, sequential role. Initially, PLK1 activity is required for centriole duplication. Subsequently, in late mitosis and G1, PLK1 phosphorylates substrates essential for recruiting distal appendage components (e.g., CEP192) to the maturing mother centriole, thereby licensing it for future ciliogenesis (Kong et al., 2014). The kinase TTK (also known as Mps1) is involved in monitoring centriole engagement and maturation timing, adding a checkpoint-like layer to the process (Mardin et al., 2010).
- **Ubiquitin-Driven Remodeling:** Targeted ubiquitination acts as a molecular switch to remodel the centriole. For instance, the E3 ubiquitin ligase SCF-FBXW5 targets the centriolar protein CP110 for degradation specifically at the mother centriole destined to become a basal body. This removal of a ciliary assembly inhibitor is a critical, asymmetric step in ciliogenesis competence (Spektor et al., 2007; Kobayashi et al., 2014). Conversely, the deubiquitinating enzyme USP33 stabilizes distal appendage proteins, ensuring their retention on the mature mother centriole.

Centriolar "Epigenetics": The Role of Post-Translational Modifications

Beyond protein composition, centrioles carry a specific pattern of post-translational modifications (PTMs) that act as an "epigenetic" code, marking their age and functional state and directing effector protein recruitment.

- **Tubulin Modifications:** The mother centriole's microtubule triplets are enriched in specific tubulin PTMs, most notably polyglutamylation. This addition of glutamate side chains creates a unique biochemical "landscape" on the mother centriole's surface. Effector proteins containing polyglutamate-binding domains (e.g., certain members of the microtubule-severing enzyme spastin and the ciliopathy protein BBS5) are selectively recruited to these modified sites, directly linking the mother's structural signature to its specialized functions (Bobiniec et al., 1998; Magiera & Janke, 2014). The density of polyglutamate chains can be modeled as a function of centriole age (t), approximately following a sigmoidal accumulation curve: $G(t) = G_{\text{max}} / (1 + e^{-k(t - t_0)})$, where G_{max} is the maximal modification level, k is the rate constant, and t_0 is the time at which modification accelerates.
- **Phosphorylation Marks:** As described, phosphorylation by PLK1 and other kinases creates docking sites for downstream scaffolding proteins, building a molecular identity in a stepwise manner.

Asymmetric Inheritance in Mitosis

In asymmetrically dividing cells, such as stem and progenitor cells, the non-equivalence of centrioles is leveraged to generate cellular diversity. An active mechanism ensures the biased segregation of the older mother centriole to a specific daughter cell, typically the one that retains stem cell identity (Yamashita et al., 2007).

- **Polarity Complex Coordination:** The conserved apical-basal polarity machinery (e.g., Par3/Par6/aPKC complex) interacts with and orients the mitotic spindle. In conjunction with the adaptor protein Inscuteable, this system guides the alignment of the centrosome containing the older mother centriole to the apical/lateral cortex of the dividing cell (Siller & Doe, 2009).
- **Cortical Tethering:** The mother centriole, via its appendages and associated proteins like Ninein, exhibits a stronger interaction with the cortical actin cytoskeleton. This differential cortical affinity facilitates the asymmetric positioning and retention of the "old" centrosome, ensuring its inheritance by the designated daughter cell.

Feedback from Cytoskeleton and Membrane

The functional asymmetry of centrioles is further reinforced by positive feedback loops from the structures they help organize.

- **Microtubule-Dependent Stabilization:** The mother centriole, as the dominant MTOC, nucleates a robust array of stable, post-translationally modified microtubules. These microtubules, in turn, provide tracks for the delivery of additional centrosomal and ciliary components, consolidating the mother's role as an organizational hub. Disruption of this microtubule network impairs the maintenance of pericentriolar material asymmetry (Muroyama et al., 2016).
- **Membrane Contact and Ciliary Signaling:** The mother centriole's unique engagement with the ciliary membrane during ciliogenesis creates a specialized compartment. This membrane contact recruits lipid-modified proteins and establishes a diffusion barrier, effectively isolating the mother centriole's distal end and its associated signaling complexes (e.g., the ciliary pocket). This compartmentalization reinforces its identity as a signaling platform. Once formed, the primary cilium generates its own signaling outputs (e.g., Hedgehog, PDGF), which can feed back to regulate centrosomal protein expression and stability, locking the cell into a ciliated, differentiated state (Goetz & Anderson, 2010).

In summary, centriolar non-equivalence is established through a delayed biochemical maturation program, marked by a specific PTM code, and is actively maintained by cellular machinery in asymmetric division. This inherent asymmetry is then amplified and functionally cemented by the very cytoskeletal and membranous structures—stable microtubule arrays and the ciliary membrane—that the mature mother centriole is uniquely equipped to organize.

Comparative Analysis Across Cellular Systems

The fundamental principles of centriolar non-equivalence manifest with remarkable context-dependent variation across different cell types and organisms. Examining these diverse systems reveals how core mechanisms are adapted to serve specific physiological functions, from cell signaling and fate determination to tissue organization and motility. The table below synthesizes key examples, followed by a detailed analysis.

System	Manifestation of Non-Equivalence	Functional Significance
Cultured Fibroblasts (RPE1, NIH3T3)	Pronounced. Only the mother centriole forms a primary cilium upon cell cycle exit (G0).	Control of quiescence entry; perception of morphogenetic signals (e.g., Hedgehog, PDGF).
Drosophila Neuroblasts	Strict segregation of the old mother centriole into the apical (stem) daughter cell.	Cell fate determination; maintenance of the stem cell pool.
Mammalian Radial Glial Cells	The old, ciliated mother centriole anchors the cell to the ventricular surface.	Determination of the division plane and the mode of division (symmetric vs. asymmetric).
Spermatozoa Formation	(Flagellum) Only one centriole (derived from the paternal mother centriole) templates the axoneme of the motile flagellum.	Provision of gamete motility.
Epithelial Cells	MTOC asymmetry directs polarized intracellular transport and establishes tissue polarity.	Establishment of apicobasal polarity; barrier function.

Cultured Fibroblasts: A Paradigm for Ciliary Signaling

Immortalized non-transformed cell lines like human retinal pigment epithelial (RPE1) cells have been instrumental in defining centriolar asymmetry. In these cells, centriole maturation follows the canonical two-cycle rule, and the functional distinction is absolute: only the mother centriole, bearing its full complement of distal appendages, can dock to a vesicle and initiate primary cilium assembly upon serum starvation and entry into G0 (Vorobjev & Chentsov, 1982; Wang et al., 2015). This exclusive competence is not merely structural but defines cellular responsiveness. The primary cilium serves as the exclusive signaling compartment for the Hedgehog (Hh) pathway in vertebrates. Key Hh components, such as Smoothened and Gli transcription factors, localize to the cilium. Therefore, the mother centriole's unique role as a

basal body directly gates the cell's ability to interpret critical morphogenetic cues, linking centriole age and identity to developmental signaling (Goetz & Anderson, 2010).

Drosophila Neuroblasts: Asymmetric Inheritance and Fate Determination

The asymmetric division of Drosophila neural stem cells (neuroblasts) provides a powerful *in vivo* model demonstrating the functional consequence of biased centriole segregation. Live imaging and lineage tracing have shown that the older "grandmother" mother centriole is consistently inherited by the self-renewing neuroblast, while the newer mother centriole goes to the differentiating ganglion mother cell (Yamashita et al., 2007). This segregation is an active process mediated by the interaction of the mother centriole's appendages with the apical polarity complex (Par3/Par6/aPKC) and the cortical protein Inscuteable. Disrupting this asymmetric inheritance, for example by forcing random segregation, compromises the proper balance between stem cell renewal and differentiation, highlighting a direct causal role for centriole age in cell fate determination (Rebelo et al., 2019).

Mammalian Radial Glial Cells: Anchoring and Division Plane Control

In the developing mammalian neocortex, radial glial cells (RGCs) are neural stem cells that span the ventricular zone. Their mother centriole is modified into a basal body that extends a short primary cilium, which is 嵌入 (embedded) into the ventricular surface. This ciliary anchorage is critical. It physically tethers the cell and defines its apical domain. During mitosis, the position of this anchored mother centriole helps orient the mitotic spindle. The inheritance of this apical membrane domain, including the mother centriole and its cilium, by one daughter cell is a key determinant of whether that cell remains a proliferative RGC (asymmetric division) or whether both daughters detach to become neurons (symmetric neurogenic division) (Paridaen et al., 2013). Thus, the mother centriole's specialized function in ciliogenesis is co-opted to regulate tissue architecture and neurogenic output.

Spermatozoa: Extreme Specialization for Motility

Spermatogenesis represents one of the most extreme examples of centriolar specialization. In mammals, the two sperm centrioles are not equivalent. The proximal centriole, believed to be derived from the paternal mother centriole, remains near the nucleus and will nucleate the sperm aster after fertilization. The distal centriole undergoes drastic remodeling to become the basal body for the axoneme of the motile sperm flagellum. Notably, it is this single centriole that templates the elaborate 9+2 microtubule structure essential for propulsion (Avidor-Reiss & Fishman, 2019). The daughter centriole is typically degraded or severely modified. This absolute functional distinction is crucial for male fertility, as defects in this centriole specialization process are a major cause of asthenozoospermia (low sperm motility).

Epithelial Cells: Establishing and Maintaining Tissue Polarity

In polarized epithelial cells, the centrosome is positioned just beneath the apical membrane. Crucially, the mother centriole, as the dominant MTOC, organizes a radial array of microtubules with their minus-ends anchored at the centrosome and their plus-ends extending toward the basal lamina. This uniform microtubule orientation is essential for polarized vesicle trafficking. For instance, the delivery of apical-specific cargos (e.g., CFTR channel) relies on kinesin motors moving along these microtubules from the center toward the cell periphery (Muroyama & Lechler, 2017). The asymmetry in microtubule nucleation and anchoring capacity between the mother and daughter centriole thus establishes a vectorial framework for intracellular transport, which is a prerequisite for the formation and maintenance of the apicobasal axis and tight junction barriers.

In conclusion, the non-equivalence of mother and daughter centrioles is not a cell culture artifact but a universal biological principle. Its manifestations are exquisitely tailored to cellular function, whether it be sensing the environment in fibroblasts, determining fate in stem cells, building tissue architecture in epithelia, or enabling motility in sperm. Understanding these context-specific adaptations is key to comprehending how centrosomal asymmetry contributes to metazoan development, homeostasis, and disease.

Pathological Consequences of Disrupted Asymmetry

The stringent regulation of centriole maturation and the strict maintenance of mother-daughter non-equivalence are not mere biological curiosities but are essential for organismal health. Disruption of these processes leads to a spectrum of human diseases, underscoring the critical functional importance of centriolar asymmetry. Pathological outcomes can be broadly categorized into ciliopathies, neurodevelopmental disorders, and cancer, each reflecting the failure of a specific facet of centriolar hierarchy.

Ciliopathies: Failure of Maturation and Ciliary Assembly

The most direct link between centriolar asymmetry and disease is observed in ciliopathies, a class of disorders caused by defective cilium formation or function. The mother centriole's exclusive role as the basal body makes genes involved in its maturation prime candidates for pathogenic mutations. Key examples include proteins essential for distal appendage assembly, such as CEP164, CEP83, and CEP89 (Graser et al., 2007; Tanos et al., 2013; Joo et al., 2013). Loss-of-function mutations in these genes prevent the proper docking of the ciliary vesicle to the mother centriole, abrogating ciliogenesis initiation.

The clinical manifestations are severe and multi-systemic, reflecting the ubiquitous role of primary cilia in development and homeostasis. Mutations in CEP164 cause nephronophthisis and are associated with Joubert syndrome, characterized by cerebellar vermis hypoplasia, retinal dystrophy, and renal cysts (Chaki et al., 2012). Similarly, mutations in CEP83 lead to

juvenile nephronophthisis and situs inversus. These phenotypes directly illustrate that the inability to establish a single, functional, mother-centric basal body disrupts Sonic Hedgehog signaling, planar cell polarity, and mechanosensation, leading to the characteristic cystic kidneys, retinal degeneration, and brain malformations.

Neurodevelopmental Disorders and Microcephaly: Disrupted Asymmetric Inheritance

The brain is particularly sensitive to defects in centriole biology due to the reliance of neural stem cells (radial glia) on asymmetric, centriole-instructed divisions. Mutations in centrosomal proteins like CDK5RAP2, CENPJ (CPAP), and MCPH1 are well-established causes of autosomal recessive primary microcephaly (MCPH) (Thornton & Woods, 2009). While these proteins have roles in centriole duplication, growing evidence suggests their pathology also involves disrupting centrosomal asymmetry and function.

In neural progenitors, the asymmetric inheritance of the older mother centriole, associated with the primary cilium and apical membrane domain, is crucial for sustaining the proliferative potential of one daughter cell. Disruption of this process—whether through mispositioning of the centrosome, failure in cilia anchoring, or symmetric segregation of mature centrioles—can bias divisions toward premature neuronal differentiation. This depletes the progenitor pool prematurely, resulting in a reduced neuronal output and a smaller brain size, the hallmark of microcephaly (Paridaen et al., 2013). Thus, pathology arises not from a failure to duplicate centrioles, but from a failure to correctly utilize their inherent asymmetry to guide cell fate.

Cancer: Loss of Hierarchical Control and Genomic Instability

Cancer cells frequently exhibit a profound dysregulation of centriole asymmetry, which contributes to tumorigenesis through multiple, synergistic pathways:

- **Loss of Structural Distinction:** In many carcinomas, the clear structural hierarchy is lost. Both centrioles within a pair may acquire distal appendages prematurely or, conversely, both may remain in an immature state (Prosser & Pelletier, 2020). This loss of ordered maturation is often driven by the overexpression of proteins like PLK4 or the dysregulation of ubiquitin ligases controlling centriole protein stability.
- **Aberrant Ciliogenesis:** The consequence of lost asymmetry is often aberrant ciliogenesis. Some tumor cells exhibit multiciliation in cell types that are normally monociliated, driven by the deregulated activity of the centriole amplification program (e.g., via deuterosome dysregulation). Conversely, many aggressive cancers lose ciliation entirely, often via constitutive centriole disengagement or CP110 stabilization, thereby silencing cilium-dependent tumor-suppressive signaling pathways like Hedgehog in a context-dependent manner (Eguether & Hahne, 2018).
- **Cytoskeletal and Migratory Dysfunction:** The mother centriole's role as the dominant MTOC establishes cell polarity. When both centrioles become functionally similar or

hyperactive, it can lead to a multipolar or disorganized microtubule cytoskeleton. This disrupts directional cell migration and can instead promote a more invasive, mesenchymal mode of motility. Furthermore, the loss of a single, stable MTOC can impair polarized vesicle trafficking, contributing to the loss of epithelial architecture.

- **Chromosomal Instability:** Perhaps the most oncogenic consequence is the generation of asymmetric mitotic spindles. If centrosomes with non-equivalent microtubule nucleation capacities (e.g., one with a mature mother, one with an immature daughter) are forced to form a bipolar spindle, they create poles of unequal strength. This results in unbalanced kinetochore-microtubule attachments, lagging chromosomes, and merotelic kinetochore orientation. The rate of chromosome mis-segregation (CIN) can be modeled as an increasing function of the difference in microtubule nucleation capacity (ΔN) between the two spindle poles: $CIN_risk \propto f(\Delta N)$, where a larger ΔN elevates the risk of aneuploidy. Such persistent chromosomal instability is a hallmark of aggressive tumors and fuels intratumoral heterogeneity and therapeutic resistance (Ganem et al., 2009).

In summary, the pathological disruption of centriolar asymmetry reveals its non-redundant roles. From single-gene ciliopathies to complex malignancies, the consequences of losing the mother-daughter hierarchy are severe, affecting tissue integrity, developmental patterning, and genomic fidelity. This underscores that centriolar non-equivalence is not a minor detail of cell biology but a fundamental organizing principle whose deregulation is a direct driver of human disease.

Integrative Model and Conclusions

The synthesis of structural, molecular, functional, and clinical data presented in this review leads to an inescapable conclusion: the non-equivalence of mother and daughter centrioles is not a transient state or a methodological artifact, but a fundamental, hardwired organizing principle of the eukaryotic centrosome. This principle emerges from an intrinsic temporal asymmetry (age) that is reinforced and exploited by spatial asymmetry (cellular positioning) to generate functional polarity. To conceptualize this hierarchical relationship, we propose the "Master-Apprentice" model of centriole duality.

The "Master-Apprentice" Model: A Framework for Centriolar Hierarchy

This model posits that the mother and daughter centrioles occupy distinct and stable roles within a functional continuum, analogous to a master craftsman and a trainee.

- **The Mother Centriole as the "Master":** This is a long-lived, structurally stable organelle that serves as the cell's primary architectural and informational hub. Its defining characteristics are stability, multifunctionality, and instructional capacity. As the "Master," it:

1. *Organizes*: It acts as the dominant microtubule-organizing center (MTOC), establishing the primary axis of intracellular transport and cell shape (Piel et al., 2000).
 2. *Signals*: It is the exclusive site for basal body formation, compartmentalizing critical signaling pathways like Hedgehog and PDGFR (Goetz & Anderson, 2010).
 3. *Instructs*: It provides spatial and molecular cues that guide the maturation of its associated daughter centriole. Its appendages and associated cortical connections establish a local cellular microenvironment that "educates" the apprentice about its position and future role.
- **The Daughter Centriole as the "Apprentice"**: This is a dynamic, structurally plastic organelle in a state of directed maturation. Its defining characteristics are plasticity, learning, and context-dependent fate. As the "Apprentice," it:
 1. *Learns*: It undergoes a time-dependent biochemical maturation program, gradually acquiring the molecular signature (e.g., appendage proteins, specific PTMs) of the Master under its tutelage (Wang et al., 2014).
 2. *Serves*: Its functional output is initially limited and subordinated to the Master. It may exhibit weak MTOC activity or none at all.
 3. *Transforms*: Its ultimate fate—to become a new Master centriole in the next generation, to be asymmetrically inherited to determine cell fate, or to be specialized for motility as in sperm—is dictated by cellular context and signals integrated by the Master centrosome (Yamashita et al., 2007; Avidor-Reiss & Fishman, 2019).

The transition from Apprentice to Master is not automatic but is a gated process requiring the passage of time and the completion of specific cell cycle checkpoints, ensuring fidelity is maintained.

Fundamental Conclusions and Implications

1. **Centrioles as Distinct Cellular Compartments**: The cell does not perceive the centriole pair as a symmetrical unit. Instead, the mother and daughter centrioles are distinct intracellular compartments with unique "address codes"—defined by their specific protein coats, PTM landscapes, and associated macromolecular complexes. These addresses are read by specific effector systems for cargo delivery, cytoskeletal anchoring, and membrane docking.
2. **Centriolar Asymmetry as a Primary Cause of Cellular Polarity**: We conclude that centriolar asymmetry is a cause, not a consequence, of broader cellular polarity. It is one of the earliest polarizing events in many cell types, established shortly after mitosis. The inherent functional difference between the two centrioles provides the initial spatial

cue—the "which way is up" signal—upon which other polarity complexes (e.g., Par, Scribble) are built. The mother centriole's role in positioning the primary cilium and organizing the microtubule network physically creates the anisotropic geometry required for polarized trafficking and asymmetric division (Siller & Doe, 2009).

3. **Loss of Asymmetry as a Direct Pathogenic Mechanism:** The clinical analysis demonstrates that disrupting centriolar non-equivalence is not a mere correlative finding but a direct pathogenetic mechanism. Forcing centrioles into a state of artificial equivalence—where both act as Masters or both remain as immature Apprentices—leads to a loss of cellular identity and coordinated function. This "symmetrization" manifests as chaotic proliferation (premature differentiation or over-proliferation), disoriented migration, and defective tissue morphogenesis, hallmarks of ciliopathies, microcephaly, and cancer (Ganem et al., 2009; Paridaen et al., 2013).

Evolutionary Perspective and Future Directions

The evolutionary acquisition of strict centriolar asymmetry likely represented a key innovation in the development of complex multicellularity. It provided a robust, templated mechanism to perpetuate cellular polarity across generations and to control asymmetric cell divisions—the essential process for generating diversity from stem cell pools. The Master-Apprentice relationship ensures that organizational memory (the Master's position and composition) is preserved while allowing for controlled replication and fate diversification (the Apprentice's maturation and potential for asymmetric segregation).

Future research must move beyond cataloging differences to dynamically modeling this relationship. Key questions remain: What is the precise molecular "licensing" signal that allows an Apprentice to become a Master? How is the instructional information from the Master centriole to its Apprentice physically transmitted? Can the Master-Apprentice ratio or dynamic be pharmacologically modulated to correct pathogenic states, such as re-establishing polarity in metastatic cells or restoring balanced divisions in microcephalic models? Addressing these questions will not only deepen our understanding of a fundamental organelle but also open novel therapeutic avenues for a wide spectrum of diseases rooted in the loss of cellular order.

In closing, the era of viewing centrioles as equivalent is over. They are fundamentally non-equivalent by design, and this very non-equivalence is the bedrock upon which cellular and tissue complexity is built.

Conclusion: Comparative Characteristics of Mother and Daughter Centrioles

The comprehensive analysis presented in this article consolidates the paradigm shift in centrosome biology: mother and daughter centrioles are fundamentally distinct organelles. The table below provides a definitive comparative summary of their defining characteristics. The conclusive evidence for these distinctions has been made possible, in large part, by advanced live-cell imaging and single-centriole tracking methodologies, which allow for the fate mapping

of individual organelles across generations using photoconvertible fluorescent proteins (e.g., Centrin-Dendra2) (Wang et al., 2014; Fong et al., 2016).

Parameter	Mother (Mature) Centriole	Daughter (New) Centriole
Age	Old (has undergone ≥ 1 complete cell cycle).	New (assembled in the current cell cycle).
Structure	Complete set: Distal appendages, subdistal appendages, dense pericentriolar material (PCM).	Minimalist: Lacks distal and subdistal appendages.
Proteome	Complex: >100 specific proteins (e.g., CEP164, Ninein, CEP170, IFT components, signaling scaffolds) (Gupta et al., 2015).	Simplified: Enriched in core scaffold proteins (SAS-6, STIL, CPAP).
MTOC Function	Strong: Organizes stable interphase microtubules; dominant microtubule nucleation and anchoring site (Piel et al., 2000).	Weak or absent: Minimal microtubule nucleation capacity.
Role in Ciliogenesis	Basal body: Initiates and supports axoneme growth; exclusive site for primary cilium formation (Goetz & Anderson, 2010).	Passive: Incapable of initiating cilium formation.
Dynamic Turnover	Stable: Slow exchange of core structural proteins; resistant to depolymerization (Mennella et al., 2013).	Dynamic: Rapid exchange of proteins; more susceptible to disassembly.
Inheritance in Asymmetric Division	Selectively inherited by the cell retaining stemness/original identity (e.g., in <i>Drosophila</i> neuroblasts) (Yamashita et al., 2007).	Segregated to the differentiating daughter cell.
Signaling Role	Active hub: Concentrates receptors (PDGFR α , Smoothened) and pathway components (Dishevelled) (Christensen et al., 2012).	Minimal.

Stress Resistance	High. More resilient to chemical, thermal, or oxidative stress (Vertii et al., 2016).	Low.
Pathological Correlation	Mutations in maturation factors (CEP164, CEP83) → ciliopathies (Joubert, Meckel syndromes) (Chaki et al., 2012).	Deregulated/accelerated maturation → centriole overduplication and structural aberrations → cancer and genomic instability (Ganem et al., 2009).

Concluding Thesis: The Principle of Seniority in Cell Biology

The non-equivalence of centrioles represents a cellular analogue of the principle of "seniority" or "primogeniture," where time, experience, and accrued structural modifications create a qualitative and functional chasm between two entities that may appear superficially similar at the moment of the daughter's birth. This is not merely a difference in age, but a difference in kind, ordained by a precise biochemical maturation program.

This distinction is the bedrock for cellular hierarchy, polarity, and fate decision-making. It transforms the centriole pair from a set of redundant, duplicating organelles into a differentiated control system. The mother centriole acts as the incumbent authority—a stable repository of positional information, a master organizer of the cytoskeleton, and the designated communicator with the extracellular environment via the cilium. The daughter centriole is the successor-in-training, whose function and ultimate fate are context-dependent, shaped by the cellular niche and the instructional legacy of its associated mother.

The methods that have cemented this understanding, particularly live-cell centriole tracking, have revealed that this asymmetry is dynamic yet robust. It is maintained across cell cycles, leveraged during development, and catastrophically disrupted in disease. The mother-daughter hierarchy ensures that the spatial memory of the cell is preserved, that divisions can be asymmetric when needed, and that signaling is compartmentalized. In essence, centriolar non-equivalence introduces a necessary and fundamental anisotropy into the cellular interior, providing a vectorial framework upon which the complex architecture of tissues and organs is built. Recognizing this is essential for a true understanding of cell biology, developmental programs, and the pathogenesis of a wide array of human diseases.

References

- Allen, R. D. (1969). The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan *Tetrahymena pyriformis*. *The Journal of Cell Biology*, 40(3), 716–733. <https://doi.org/10.1083/jcb.40.3.716>
- Anderson, C. T., & Stearns, T. (2009). Centriole age underlies asynchronous primary cilium growth in mammalian cells. *Current Biology*, 19(17), 1498–1502. <https://doi.org/10.1016/j.cub.2009.07.049>
- Avidor-Reiss, T., & Fishman, E. L. (2019). Atypical centrioles during sexual reproduction. *Frontiers in Cell and Developmental Biology*, 7, 10. <https://doi.org/10.3389/fcell.2019.00010>

- Bobinnec, Y., Moudjou, M., Fouquet, J. P., Desbruyères, E., Eddé, B., & Bornens, M. (1998). Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. *Cell Motility and the Cytoskeleton*, 39(3), 223–232. [https://doi.org/10.1002/\(SICI\)1097-0169\(1998\)39:3<223::AID-CM5>3.0.CO;2-6](https://doi.org/10.1002/(SICI)1097-0169(1998)39:3<223::AID-CM5>3.0.CO;2-6)
- Bornens, M. (2012). The centrosome in cells and organisms. *Science*, 335(6067), 422–426. <https://doi.org/10.1126/science.1209037>
- Bowler, M., Kong, D., Sun, S., Nanjundappa, R., Evans, L., Farmer, V., Holland, A., Mahjoub, M. R., Sui, H., & Loncarek, J. (2019). High-resolution characterization of centriole distal appendage morphology and function by cryo-electron tomography. *Journal of Cell Biology*, 218(1), 240–256. <https://doi.org/10.1083/jcb.201807132>
- Chaki, M., Airik, R., Ghosh, A. K., Giles, R. H., Chen, R., Slaats, G. G., ... & Hildebrandt, F. (2012). Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. *Cell*, 150(3), 533–548. <https://doi.org/10.1016/j.cell.2012.06.028>
- Chaki, M., Airik, R., Ghosh, A. K., Giles, R. H., Chen, R., Slaats, G. G., Wang, H., Hurd, T. W., Zhou, W., Cluckey, A., Gee, H. Y., Ramaswami, G., Veltman, J. A., Lai, T., Yap, Y. W., Jamshidi, N., Sayer, J. A., Kroes, H. Y., Letteboer, S. J., ... Hildebrandt, F. (2012). Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. *Cell*, 150(3), 533–548. <https://doi.org/10.1016/j.cell.2012.06.028>
- Christensen, S. T., Pedersen, L. B., Schneider, L., & Satir, P. (2012). Sensory cilia and integration of signal transduction in human health and disease. *Traffic*, 13(1), 97–104. <https://doi.org/10.1111/j.1600-0854.2011.01284.x>
- Christensen, S. T., Pedersen, L. B., Schneider, L., & Satir, P. (2012). Sensory cilia and integration of signal transduction in human health and disease. *Traffic*, 13(1), 97–104. <https://doi.org/10.1111/j.1600-0854.2011.01284.x>
- Eguether, T., & Hahne, M. (2018). Mixed signals from the cell's antennae: primary cilia in cancer. *EMBO Reports*, 19(11), e46589. <https://doi.org/10.15252/embr.201846589>
- Fong, K. W., et al. (2016). 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. *eLife*, 5, e16270. <https://doi.org/10.7554/eLife.16270>
- Fong, K. W., Hau, S. Y., Kho, Y. S., Jia, Y., He, L., & Qi, R. Z. (2016). Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics. *Molecular Biology of the Cell*, 27(22), 3590–3600. <https://doi.org/10.1091/mbc.E16-03-0174>
- Ganem, N. J., Godinho, S. A., & Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. *Nature*, 460(7252), 278–282. <https://doi.org/10.1038/nature08136>
- Ganem, N. J., Godinho, S. A., & Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. *Nature*, 460(7252), 278–282. <https://doi.org/10.1038/nature08136>
- Goetz, S. C., & Anderson, K. V. (2010). The primary cilium: a signalling centre during vertebrate development. *Nature Reviews Genetics*, 11(5), 331–344. <https://doi.org/10.1038/nrg2774>
- Goetz, S. C., & Anderson, K. V. (2010). The primary cilium: a signalling centre during vertebrate development. *Nature Reviews Genetics*, 11(5), 331–344. <https://doi.org/10.1038/nrg2774>
- Goetz, S. C., et al. (2012). The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. *Cell*, 151(4), 847–858. <https://doi.org/10.1016/j.cell.2012.10.010>
- Graser, S., et al. (2007). Cep164, a novel centriole appendage protein required for primary cilium formation. *The Journal of Cell Biology*, 179(2), 321–330. <https://doi.org/10.1083/jcb.200707181>
- Graser, S., Stierhof, Y. D., Lavoie, S. B., Gassner, O. S., Lamla, S., Le Clech, M., & Nigg, E. A. (2007). Cep164, a novel centriole appendage protein required for primary cilium formation. *Journal of Cell Biology*, 179(2), 321–330. <https://doi.org/10.1083/jcb.200707181>

Guarguaglini, G., Duncan, P. I., Stierhof, Y. D., Holmström, T., Duensing, S., & Nigg, E. A. (2005). The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. *Molecular Biology of the Cell*, 16(3), 1095–1107. <https://doi.org/10.1091/mbc.e04-10-0939>

Gupta, G. D., Coyaud, É., Gonçalves, J., Mojarrad, B. A., Liu, Y., Wu, Q., ... & Pelletier, L. (2015). A dynamic protein interaction landscape of the human centrosome-cilium interface. *Cell*, 163(6), 1484–1499. <https://doi.org/10.1016/j.cell.2015.10.065>

Gupta, G. D., Coyaud, É., Gonçalves, J., Mojarrad, B. A., Liu, Y., Wu, Q., Gheiratmand, L., Comartin, D., Tkach, J. M., Cheung, S. W., Bashkurov, M., Hasegan, M., Knight, J. D., Lin, Z. Y., Schueler, M., Hildebrandt, F., Moffat, J., Gingras, A. C., Raught, B., & Pelletier, L. (2015). A dynamic protein interaction landscape of the human centrosome-cilium interface. *Cell*, 163(6), 1484–1499. <https://doi.org/10.1016/j.cell.2015.10.065>

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. *Issues and Developments in Medicine and Medical Research* Vol. 2, 22-31.

Jakobsen, L., Vanselow, K., Skogs, M., Toyoda, Y., Lundberg, E., Poser, I., Falkenby, L. G., Bennetzen, M., Westendorf, J., Nigg, E. A., Uhlen, M., Hyman, A. A., & Andersen, J. S. (2011). Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. *The EMBO Journal*, 30(8), 1520–1535. <https://doi.org/10.1038/emboj.2011.63>

Joo, K., Kim, C. G., Lee, M. S., Moon, H. Y., Lee, S. H., Kim, M. J., Kweon, H. S., Park, W. Y., Kim, C. H., & Gleeson, J. G. (2013). CCDC41 is required for ciliary vesicle docking to the mother centriole. *Proceedings of the National Academy of Sciences*, 110(15), 5987–5992. <https://doi.org/10.1073/pnas.1220927110>

Kobayashi, T., Kim, S., Lin, Y. C., Inoue, T., & Dynlacht, B. D. (2014). The CP110-interacting proteins Talpid3 and Cep290 play overlapping and distinct roles in cilia assembly. *Journal of Cell Biology*, 204(2), 215–229. <https://doi.org/10.1083/jcb.201304153>

Kong, D., Farmer, V., Shukla, A., James, J., Gruskin, R., Kiriyama, S., & Loncarek, J. (2014). Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. *Journal of Cell Biology*, 206(7), 855–865. <https://doi.org/10.1083/jcb.201407087>

Magiera, M. M., & Janke, C. (2014). Post-translational modifications of tubulin. *Current Biology*, 24(9), R351–R354. <https://doi.org/10.1016/j.cub.2014.03.032>

Mardin, B. R., Lange, C., Baxter, J. E., Hardy, T., Schiebel, E., & Fry, A. M. (2010). Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. *Nature Cell Biology*, 12(12), 1166–1176. <https://doi.org/10.1038/ncb2120>

Mennella, V., Keszthelyi, B., McDonald, K. L., Chhun, B., Kan, F., Rogers, G. C., ... & Agard, D. A. (2013). Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. *Nature Cell Biology*, 15(10), 1159–1168. <https://doi.org/10.1038/ncb2843>

Mennella, V., Keszthelyi, B., McDonald, K. L., Chhun, B., Kan, F., Rogers, G. C., Huang, B., & Agard, D. A. (2013). Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. *Nature Cell Biology*, 15(10), 1159–1168. <https://doi.org/10.1038/ncb2843>

Mogensen, M. M., Malik, A., Piel, M., Bouckson-Castaing, V., & Bornens, M. (2000). Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. *Journal of Cell Science*, 113(Pt 17), 3013–3023. <https://doi.org/10.1242/jcs.113.17.3013>

Muroyama, A., & Lechner, T. (2017). Microtubule organization, dynamics and functions in differentiated cells. *Development*, 144(17), 3012–3021. <https://doi.org/10.1242/dev.153171>

Muroyama, A., Seldin, L., & Lechler, T. (2016). Divergent regulation of functionally distinct γ -tubulin complexes during differentiation. *Journal of Cell Biology*, 213(6), 679–692. <https://doi.org/10.1083/jcb.201601099>

Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. *Nature Reviews Molecular Cell Biology*, 19(5), 297–312. <https://doi.org/10.1038/nrm.2018.14>

Paridaen, J. T., Wilsch-Bräuninger, M., & Huttner, W. B. (2013). Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. *Cell*, 155(2), 333–344. <https://doi.org/10.1016/j.cell.2013.08.060>

Piel, M., Meyer, P., Khodjakov, A., Rieder, C. L., & Bornens, M. (2000). The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. *Journal of Cell Biology*, 149(2), 317–330. <https://doi.org/10.1083/jcb.149.2.317>

Piel, M., Meyer, P., Khodjakov, A., Rieder, C. L., & Bornens, M. (2000). The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. *Journal of Cell Biology*, 149(2), 317–330. <https://doi.org/10.1083/jcb.149.2.317>

Prosser, S. L., & Pelletier, L. (2020). Centriolar satellite biogenesis and function in vertebrate cells. *Journal of Cell Science*, 133(3), jcs239566. <https://doi.org/10.1242/jcs.239566>

Rebelo, R. J., Kutschke, S., & Gergely, F. (2019). Centriole amplification by mother and daughter centrioles differs in multiciliated cells. *Nature*, 567(7746), 105–109. <https://doi.org/10.1038/s41586-019-0986-9>

Siller, K. H., & Doe, C. Q. (2009). Spindle orientation during asymmetric cell division. *Nature Cell Biology*, 11(4), 365–374. <https://doi.org/10.1038/ncb0409-365>

Singla, V., Romaguera-Ros, M., García-Verdugo, J. M., & Reiter, J. F. (2010). Ofd1, a human disease gene, regulates the length and distal structure of centrioles. *Developmental Cell*, 18(3), 410–424. <https://doi.org/10.1016/j.devcel.2009.12.022>

Spektor, A., et al. (2007). Cep97 and CP110 suppress a cilia assembly program. *Cell*, 130(4), 678–690. <https://doi.org/10.1016/j.cell.2007.06.027>

Spektor, A., Tsang, W. Y., Khoo, D., & Dynlach, B. D. (2007). Cep97 and CP110 suppress a cilia assembly program. *Cell*, 130(4), 678–690. <https://doi.org/10.1016/j.cell.2007.06.027>

Tanos, B. E., et al. (2013). Centriole distal appendages promote membrane docking, leading to cilia initiation. *Genes & Development*, 27(2), 163–168. <https://doi.org/10.1101/gad.207043.112>

Tanos, B. E., Yang, H. J., Soni, R., Wang, W. J., Macaluso, F. P., Asara, J. M., & Tsou, M. F. B. (2013). Centriole distal appendages promote membrane docking, leading to cilia initiation. *Genes & Development*, 27(2), 163–168. <https://doi.org/10.1101/gad.207043.112>

Thornton, G. K., & Woods, C. G. (2009). Primary microcephaly: do all roads lead to Rome? *Trends in Genetics*, 25(11), 501–510. <https://doi.org/10.1016/j.tig.2009.09.011>

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. *Molecular Biology Reports*, 50(3), 2751-2761. DOI : <https://pubmed.ncbi.nlm.nih.gov/36583780>

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycation and oxidative stress. *Front Pharmacol*. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. *Annals of Rejuvenation Science*, 1(1). DOI : <https://doi.org/10.65649/yx9sn772>

Tkemaladze, J. (2026). Visions of the Future. *Longevity Horizon*, 2(1). DOI : <https://doi.org/10.65649/8be27s21>

Uetake, Y., Loncarek, J., Nordberg, J. J., English, C. N., La Terra, S., Khodjakov, A., & Sluder, G. (2007). Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. *Journal of Cell Biology*, 176(2), 173–182. <https://doi.org/10.1083/jcb.200607073>

Vertii, A., Hehnly, H., & Doxsey, S. (2016). The centrosome, a multitalented renaissance organelle. *Cold Spring Harbor Perspectives in Biology*, 8(12), a025049. <https://doi.org/10.1101/cshperspect.a025049>

Vorobjev, I. A., & Chentsov, Y. S. (1982). Centrioles in the cell cycle. I. Epithelial cells. *Journal of Cell Biology*, 93(3), 938–949. <https://doi.org/10.1083/jcb.93.3.938>

Wang, L., et al. (2014). UNC45A deficiency causes microvillus inclusion disease-like phenotype by impairing myosin VB-dependent apical trafficking. *The Journal of Clinical Investigation*, 124(7), 2947–2962. <https://doi.org/10.1172/JCI75191>

Wang, L., Lee, K., Malonis, R., Sanchez, I., & Dynlacht, B. D. (2014). Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis. *eLife*, 3, e03130. <https://doi.org/10.7554/eLife.03130>

Wang, L., Lee, K., Malonis, R., Sanchez, I., & Dynlacht, B. D. (2015). Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis. *eLife*, 4, e03130. <https://doi.org/10.7554/eLife.03130.002>

Wong, Y. L., Anzola, J. V., Davis, R. L., Yoon, M., Motamedi, A., Kroll, A., Seo, C. P., Hsia, J. E., Kim, S. K., Mitchell, J. W., Mitchell, B. J., Desai, A., Gahman, T. C., Shiao, A. K., & Oegema, K. (2015). Reversible centriole depletion with an inhibitor of Polo-like kinase 4. *Science*, 348(6239), 1155–1160. <https://doi.org/10.1126/science.aaa5111>

Yamashita, Y. M., Mahowald, A. P., Perlin, J. R., & Fuller, M. T. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. *Science*, 315(5811), 518-521. <https://doi.org/10.1126/science.1134910>