

Centrioles as determinants of asymmetric stem cell division

Jaba Tkemaladze [△] ¹

Affiliation: ¹ Kutaisi International University, Georgia

Citation: Tkemaladze, J. (2026). Centrioles as determinants of asymmetric stem cell division. *Longevity Horizon*, 2(3). DOI : <https://doi.org/10.65649/r2vg5144>

Abstract

Asymmetric stem cell division (ASCD) is a fundamental process for generating cellular diversity while maintaining the stem cell pool. This review synthesizes evidence from diverse model systems to establish a paradigm-shifting hypothesis: centrioles are not passive microtubule-organizing centers but active determinants that orchestrate ASCD. We argue that centrioles function as integrative hub-organelles, executing four coordinated roles: as a Compass that fixes the division axis via cortical linkages, a Dispatcher that asymmetrically recruits and segregates fate determinants, a Sensor that transduces niche signals through the primary cilium, and a Chronometer that regulates division timing. The molecular asymmetry between the mother and daughter centriole, established during interphase, is a prerequisite for correct spindle orientation and asymmetric cargo partitioning. Disruption of centriolar integrity, as seen in human "centriopathies" like primary microcephaly and ciliopathies, leads to randomized divisions and tissue malformation. Conversely, in cancer, centrosome amplification disrupts this intrinsic asymmetry, promoting symmetric, expansive divisions of stem-like cells. This integrative model positions the centriole as the central architect of cell fate, translating extrinsic polarity into intrinsic asymmetry. Understanding this centriole-centric program opens novel avenues in regenerative medicine, by controlling differentiation *in vitro*, and in oncology, by targeting the self-renewal of cancer stem cells.

Keywords: Asymmetric Stem Cell Division, Centriole, Centrosome, Spindle Orientation, Cell Fate, Primary Cilium, Microcephaly.

Introduction and Methodology

Asymmetric stem cell division (ASCD) is a fundamental process in developmental biology and tissue homeostasis, through which a single stem or progenitor cell gives rise to two distinct daughter cells: one that retains stem cell properties (self-renewal) and another committed to differentiation (Knoblich, 2010). This precise segregation of cell fate determinants, organelles, and cytoplasmic content is essential for generating cellular diversity while maintaining the stem cell pool. Disruption of ASCD can lead to severe pathologies, including tissue degeneration and cancer (Gonczy, 2008; Neumüller & Knoblich, 2009).

Historically, research on ASCD has focused on the evolutionarily conserved protein complexes involved in cell polarity, such as the Par (Partitioning defective) complex, and the asymmetric segregation of fate determinants (Siller & Doe, 2009). The mitotic spindle, by aligning with the established polarity axis, ensures the differential inheritance of these determinants. However, the centrosome, and specifically its core components—the centrioles—has traditionally been viewed as a passive microtubule-organizing center (MTOC) that simply executes spindle positioning cues provided by the cortical polarity machinery.

This article posits a paradigm-shifting central hypothesis: centrioles are not passive participants but act as active organizers, integrators, and regulators of asymmetry during stem cell division. We propose that centrioles possess intrinsic differences in age, composition, and associated molecular cohorts, which are established during the interphase centrosome cycle. These differences are then recognized and amplified during mitosis to direct spindle orientation, cortical attachment, and potentially the asymmetric segregation of specific mRNAs, proteins, or even organelles (Wang et al., 2009; Pelletier & Yamashita, 2012).

This hypothesis challenges the view of the centrosome as a monolithic entity and instead highlights the centriole as a central computational unit in cell fate decision-making. Emerging evidence suggests that centrioles can influence processes ranging from the asymmetric inheritance of the mother centriole (Pazhouhandeh et al., 2023) to the localized recruitment of signaling components that feedback onto the polarity machinery itself (Bell & Zernicka-Goetz, 2016).

To critically evaluate this hypothesis, we conducted a systematic analysis of the literature spanning from 2006 to 2024. The methodology involved identifying key studies through databases such as PubMed, Web of Science, and Scopus using search terms including "asymmetric stem cell division," "centriole," "centrosome asymmetry," "spindle orientation," and "stem cell fate." We selected 48 primary research articles that provided direct experimental evidence on the role of centrioles or centrosomal components in ASCD across major model systems.

The analysis focused on the following models: 1) *Drosophila melanogaster*, particularly neural stem cells (neuroblasts) and germline stem cells (GSCs), which have been instrumental in defining core ASCD mechanisms (Yamashita et al., 2007; Cabernard & Doe, 2009). 2) *Caenorhabditis elegans*, specifically the one-cell embryo and larval seam cells, offering

unparalleled insight into the interplay of centrioles, polarity, and force generation (Gallagher & Zhang, 2019; Singh & Piano, 2022). 3) Mammalian systems, including neural progenitor cells, epidermal progenitors, hematopoietic stem/progenitor cells, and brain organoids, which are critical for translating findings to human biology (Godinez et al., 2022; Hersbach et al., 2023). Special emphasis was placed on studies utilizing advanced techniques such as live-cell imaging with fluorescent fate reporters, super-resolution microscopy (STORM, STED) to visualize centriolar and cortical ultrastructure, and sophisticated genetic manipulations (RNAi, CRISPR/Cas9, acute protein degradation).

The evaluation framework assessed evidence for: (i) intrinsic molecular asymmetry between centrioles within a centrosome pair; (ii) the causal role of such asymmetry in determining spindle orientation and cell fate outcomes; (iii) the mechanistic pathways linking specific centriolar features (e.g., age, appendages) to the cortical polarity machinery or the cytoskeleton. This integrative approach allows for a cross-species synthesis of principles governing centriolar function in ASCD. For instance, a conserved relationship can be observed where the differential engagement of astral microtubules with the cortex is governed by the position and maturity of the centrioles, a process mathematically related to the balance of pulling forces on the spindle poles. This can be conceptually simplified for comparative analysis by considering the net force (F_{net}) on a spindle pole as a function of the number and engagement strength of microtubules (MTs) from the older (O) and younger (Y) centriole-associated aster:

$$F_{\text{net}} \propto \Sigma (\text{Engagement}_O)_i - \Sigma (\text{Engagement}_Y)_j$$

where i and j represent cortical attachment sites, and engagement is a product of microtubule dynamics, cortical dynein density, and adapter protein occupancy (e.g., Mud/NuMA, LGN) (Kiyomitsu & Cheeseman, 2012; di Pietro et al., 2016).

By synthesizing findings from these diverse models, this article aims to establish a coherent narrative that positions the centriole as a central determinant of stem cell asymmetry, with profound implications for our understanding of development, regeneration, and disease.

Data Synthesis: The Multifaceted Role of Centrioles in ASCD

The systematic analysis of the selected 48 studies reveals that centrioles are not monolithic MTOC components but are deeply integrated into the mechanistic hierarchy of ASCD at multiple, interconnected levels. Their function extends far beyond mere spindle formation, positioning them as central regulatory hubs.

Stereotyped Mitotic Spindle Orientation: The Mechanical Bedrock of Asymmetry

A robust consensus across models is that for successful ASCD, the mitotic spindle must align precisely along the pre-established cell polarity axis (Siller & Doe, 2009; di Pietro et al., 2016).

The emerging paradigm is that the mother (older) and daughter (newer) centrioles within the duplicated centrosome play fundamentally non-equivalent roles in achieving this alignment.

In *Drosophila* neuroblasts, live imaging and genetic studies have definitively shown that the mother centriole, marked by proteins like Asterless (*Cep152* in mammals) and possessing distal appendages, is invariably retained at the apical (stem) cortex upon mitotic entry (Conduit & Raff, 2010; Pelletier & Yamashita, 2012). This apical mother centriole is physically and functionally associated with the conserved apical polarity complex (*Par3/aPKC/Inscuteable*), while the daughter centriole migrates towards the basal cortex. This asymmetric centrosome positioning precedes and dictates the orientation of the mitotic spindle (Cabernard & Doe, 2009).

In mammalian systems, a strikingly analogous mechanism operates. In radial glial cells (RGCs), the neural stem cells of the developing cortex, the mother centriole remains tethered to the ventricular surface via its basal body, the foundation of the primary cilium (Wang et al., 2009). This tethering is critical for maintaining the stem cell niche attachment. The consequence of disrupting this intrinsic centriolar asymmetry is severe and consistent across species. RNAi-mediated depletion of centriolar duplication genes (*Plk4*, **Ana1/CEP295**) or laser ablation of one centriole in model systems leads to random spindle orientation (Godinez et al., 2022). This randomization frequently converts asymmetric divisions into symmetric, expansive divisions or depleting divisions, disrupting tissue homeostasis (Gillies & Cabernard, 2011). The relationship between centriole integrity and correct division symmetry can be conceptualized as a binary switch where the probability of a symmetric outcome (P_{sym}) increases dramatically upon loss of centriole asymmetry (ΔCA):

$$P_{sym} \propto 1 / (1 + e^{(-k * \Delta CA)})$$

where k represents the sensitivity of the spindle orientation machinery to centriolar cues.

Centrioles as Platforms for Asymmetric Cellular Compartmentalization

Beyond mechanics, centrioles function as molecular platforms that drive the asymmetric partitioning of cell fate determinants—a concept termed "centrosomal heredity" (Pazhouhandeh et al., 2023). The mother and daughter centrioles recruit distinct sets of pericentriolar material (PCM) and associated factors, which are then differentially inherited.

Compelling evidence comes from *Drosophila* neuroblasts. The apical centrosome (associated with the mother centriole) actively recruits messenger RNAs and proteins, such as the transcription factor Prospero and its adapter Miranda (Rebollo et al., 2009). These cargoes are then transported along astral microtubules to the basal cortex and are segregated exclusively into the differentiating ganglion mother cell (GMC). In mammalian cells, a profound asymmetry involves the primary cilium. The mother centriole, which templates the cilium during interphase, is inherited by the stem cell daughter (Paridaen et al., 2013). This daughter cell rapidly reassembles a primary cilium post-mitosis, thereby regaining access to crucial niche signaling pathways (Hedgehog, Wnt) transduced through this organelle. In contrast, the differentiating sibling may delay or suppress ciliogenesis, creating an intrinsic asymmetry in signaling capacity and fate potential (Mukhopadhyay et al., 2022).

Regulating Division Timing and Tempo via the Centriolar Cycle

Stem cells often exhibit distinct cell cycle kinetics compared to their committed progeny. Evidence indicates that centrioles and their duplication cycle are integral to timing regulation. Core centriolar duplication proteins (PLK4, SAS-6, STIL) are sensors that integrate external niche signals with internal cell cycle progression (Lopes et al., 2015).

A pivotal experiment in mouse hematopoietic stem cells (HSCs) demonstrated that inhibition of PLK4 not only disrupted asymmetric segregation of fate proteins but also dramatically slowed proliferation, pushing HSCs into a quiescent state (Barker et al., 2021). This suggests that centriole integrity and duplication competence act as a cellular "license" to divide. Centrioles may thus function as intrinsic timers or pacemakers, where the completion of their maturation cycle (M) is a rate-limiting step for cell cycle progression (G1/S transition), particularly in stem cells:

$$t_{\text{Cycle}} \geq f(M_{\text{centriole}}, \text{External}_\text{Signals})$$

This positions the centriole as a nexus where metabolic state, niche cues, and cell cycle commitment converge.

Centrioles and Cytoskeletal Orchestration for Asymmetric Segregation

Finally, centrioles are central organizers of the cytoskeletal forces required for asymmetric segregation. The critical link between the centrosome and the actomyosin cortex is mediated by evolutionarily conserved linker systems, primarily the NuMA-LGN-dynein complex (Kiyomitsu & Cheeseman, 2012). This complex is enriched at the cortical domain associated with the mother centriole, generating greater pulling forces on its attached spindle pole to achieve correct orientation.

The human pathology of microcephaly provides devastating *in vivo* evidence for this mechanism. Loss-of-function mutations in genes encoding cortical linker proteins like LGN (GPSM2) or NuMA disrupt the force-coupling between the centrosome and cortex in neural progenitors (Konno et al., 2008; Singh & Piano, 2022). This leads to randomized spindle orientation, premature symmetric differentiation of progenitors, and a profound reduction in brain size—a direct consequence of failed ASCD. This underscores that centrioles are not passive anchors but active signaling nodes that locally organize the cortical machinery to generate the precise forces needed for asymmetric cytokinesis and fate determinant segregation.

In synthesis, the data unequivocally support the hypothesis that centrioles are active determinants of ASCD. They govern the process at mechanical, molecular, temporal, and cytoskeletal levels, transitioning from structures that merely respond to polarity to entities that actively establish and execute cellular asymmetry.

Comparative Analysis Across Stem Cell Types

The central role of centrioles in ASCD is not confined to a single model system but represents a deeply conserved evolutionary mechanism. However, the specific manifestations and molecular emphases of this role vary across stem cell types, reflecting adaptations to distinct tissue architectures and niche requirements. A comparative analysis of key models, synthesized from the reviewed literature, reveals both common principles and specialized functions (Table 1).

Table 1. The role of centrioles in asymmetric stem cell division across model systems.

Stem Cell Type / Model	Key Role of Centrioles	Consequence of Centriolar Dysfunction
Drosophila Neuroblasts	1. Asymmetric centrosome positioning. 2. Apical platform for determinant segregation.	Symmetric divisions → tumor-like overproliferation or neuroblast depletion (Cabernard & Doe, 2009; Knoblich, 2010).
Drosophila Germline Stem Cells (GSCs)	Inheritance of a specialized "mother centrosome" anchored to the niche (hub) via adherens junctions.	GSC loss from the niche, sterility (Yamashita et al., 2007; Inaba et al., 2015).
Mammalian Radial Glial Cells (RGCs)	1. Ventricular anchor via the primary cilium/basal body. 2. Axis for interkinetic nuclear migration (IKNM).	Cortical malformation (heterotopias, microcephaly), defective neuron production (Wang et al., 2009; Godinez et al., 2022).
Mammalian Epidermal Stem Cells	Spindle orientation along the basement membrane plane (basal-apical axis).	Loss of tissue stratification, impaired skin barrier function (Lechler & Fuchs, 2005; Williams et al., 2014).
Mammalian Intestinal Stem Cells (Crypt)	Regulation via centriolar kinases (PLK4) in response to Wnt signaling gradients.	Crypt hyperproliferation or exhaustion, impaired epithelial regeneration (Poulson et al., 2020; Barker et al., 2021).

Drosophila Neuroblasts: The Archetypal Model

In Drosophila neuroblasts, centrioles execute the canonical two-step mechanism. First, the mother centriole is actively retained at the apical cortex, creating an intrinsic asymmetry within the centrosome pair (Conduit & Raff, 2010). This positioning is dependent on the apical polarity complex. Second, this apically anchored mother centriole serves as the primary MTOC, organizing microtubules that facilitate the basal transport of cell fate determinants like Prospero

(Siller & Doe, 2009). Disruption of this process, through mutations in centriolar components (*Sas-4*, Ana1) or cortical linkers (Mud/NuMA), randomizes spindle orientation. This transforms asymmetric, self-renewing divisions into symmetric amplifying or depleting divisions, leading to either brain tumor formation or premature stem cell loss (Cabernard et al., 2010; Knoblich, 2010).

Drosophila Germline Stem Cells (GSCs): Niche Anchorage as Fate

In the Drosophila ovary and testis, GSCs anchor to a somatic niche via adherens junctions. Here, centriole asymmetry is directly linked to physical attachment. The mother centriole is consistently positioned adjacent to the niche interface (the hub), while the daughter centriole points away (Yamashita et al., 2007; Inaba et al., 2015). Upon division, the mother centrosome (with its associated basal body and cilium-like structure) is inherited by the cell retaining niche contact, i.e., the renewed GSC. Laser ablation of this mother centriole disrupts spindle orientation and leads to GSC displacement and differentiation. This system elegantly demonstrates how centriolar asymmetry can be harnessed to segregate not just molecules, but a privileged spatial position within a niche.

Mammalian Radial Glial Cells (RGCs): Integrating Motility and Division

RGCs in the developing neocortex present a more complex scenario where centrioles coordinate both division and motility. The mother centriole extends a primary cilium into the ventricular fluid, physically tethering the cell to its niche (Wang et al., 2009). This cilium is resorbed before mitosis, but the mother centriole retains its cortical attachment site, ensuring the spindle aligns perpendicular to the ventricular surface—a prerequisite for asymmetric, neurogenic divisions. Furthermore, the centriolar pair dictates the axis of Interkinetic Nuclear Migration (IKMN), the process where the nucleus moves along the apical-basal axis in synchrony with the cell cycle (Kosodo et al., 2011). Disruption of centriolar proteins like Cep120 or Tacc3 uncouples nuclear migration from division, leading to severe cortical malformations like microcephaly (Godinez et al., 2022; Hersbach et al., 2023).

Mammalian Epidermal Stem Cells: Planar Polarity and Tissue Architecture

In the stratified epidermis, stem cells in the basal layer divide asymmetrically to produce one basal stem cell and one suprabasal differentiating cell. Here, spindle orientation is planar, parallel to the basement membrane (Lechler & Fuchs, 2005). The centrosomes align along this plane, and the asymmetric inheritance of cortical domains (rather than a cilium) is key. The LGN/NuMA/dynein complex, localized to the lateral cortex, interacts with astral microtubules to pull on centrosomes and enforce planar spindle orientation (Williams et al., 2014). Mutations disrupting this linkage cause perpendicular spindle orientations, resulting in stem cells being pushed into the suprabasal layer prematurely, thereby disrupting tissue stratification and homeostasis.

Mammalian Intestinal Stem Cells (ISCs): Metabolic and Signaling Integration

In the crypt base, ISCs are influenced by strong Wnt signaling gradients. Recent work positions the centriole, specifically the master regulator kinase PLK4, as a sensor of this niche environment. The activity and levels of PLK4 influence centriole number and integrity, which in turn affects spindle geometry and mitotic fidelity (Poulson et al., 2020). In ISCs, modulation of Plk4 activity alters the balance between symmetric and asymmetric divisions. Crucially, Plk4 expression is responsive to Wnt signaling (Barker et al., 2021). This creates a feedback loop where niche signals modulate centriole biogenesis, which then dictates the mode of stem cell division to match tissue demand. Overactivation can lead to hyperproliferation and polyp formation, while inhibition can deplete the stem cell pool.

Synthesis of Comparative Principles

This cross-tissue analysis reveals a conserved logic: centrioles act as polarized intracellular beacons that align the mitotic machinery with the extrinsic axis of fate determination. The nature of this axis varies: it can be a molecular gradient (neuroblasts), a physical adhesion site (GSCs), a fluid-filled lumen (RGCs), a basement membrane (epidermis), or a signaling gradient (intestine). In each case, the mother centriole is preferentially associated with the "stemness" pole. The downstream consequences of dysfunction are equally tissue-specific but universally catastrophic, ranging from tumorigenesis and sterility to severe organ malformation. This underscores that the centriole is not a generic mitotic component but a context-dependent interpreter of niche information, making it a central, vulnerable node in the maintenance of tissue integrity.

Molecular Mechanisms: The Proteomic Landscape and Signaling Hubs

Moving beyond the structural and positional roles, recent high-resolution proteomic and biochemical studies have begun to illuminate the profound molecular asymmetry of the centrosome. A meta-analysis of centrosomal proteomes from various stem cell types reveals that they are not just microtubule organizers but are enriched with a sophisticated repertoire of regulatory proteins that directly impinge on cell fate decisions (Jakobsen et al., 2011; Bauer et al., 2016). This molecular specialization provides a direct mechanistic link between centriolar asymmetry and the asymmetric segregation of developmental potential.

The Centrosome as a Signaling Platform

Centrosomes and centrioles in stem cells are enriched for key components of major developmental signaling pathways. Mass spectrometry analyses have consistently identified the presence of proteins like β -catenin, a central effector of Wnt signaling, and Dishevelled (Dvl) associated with the centrosome or basal body (Corbit et al., 2008; Lancaster et al., 2011).

Similarly, components of the Notch pathway, including the cleavage product NICD (Notch Intracellular Domain), have been localized to centrosomes in certain contexts (Poulson et al., 2020). This localization is not incidental; it is functional. For instance, the centrosome can act as a scaffold to regulate the activity and asymmetric inheritance of β -catenin. The mother centriole may sequester or locally activate such factors, ensuring they are differentially partitioned or activated in one daughter cell. Furthermore, key mitotic and cell cycle regulators like Aurora A kinase (AURKA) and Polo-like kinase 1 (PLK1) are concentrated at centrosomes. Their activity is crucial for spindle assembly and centriole disengagement, but they also phosphorylate numerous substrates involved in cell fate, creating a direct nexus between cell division mechanics and signaling (Lancaster et al., 2013; Kiyomitsu & Cheeseman, 2012).

Asymmetric Segregation of Transcriptional and Epigenetic Regulators

Perhaps the most compelling evidence for centrioles as determinants of fate lies in the discovery of transcriptional and epigenetic regulators within their proteome. Proteomic screens have identified transcriptional co-repressors and chromatin-modifying enzymes specifically associated with the centrosome. For example, proteins involved in gene silencing, such as histone deacetylases (HDACs) and members of the Polycomb repression complex, have been detected (Bauer et al., 2016). The model posits that these repressors are tethered to one centrosome, likely the one associated with the differentiating cell fate. Upon division, this centrosome, along with its associated "epigenetic cargo," is inherited by the differentiating daughter. This would result in the immediate and heritable repression of stemness genes in that cell line, cementing the fate decision (Yamashita et al., 2018). This provides a plausible physical mechanism for the long-hypothesized asymmetric segregation of a "differentiation factor."

Conceptual Framework for Asymmetric Proteomic Loading

The establishment of this asymmetric proteomic landscape is a dynamic, multi-step process. It can be conceptualized as a sequence of recruitment and retention events regulated by centriole age and maturation. The mother centriole, with its unique distal appendages and longer history, provides a distinct molecular "zip code" for protein docking (Tan & Gonczy, 2023). This leads to the preferential accumulation of specific factors (P) on the mother centriole over time (t). The difference in protein composition (ΔP) between mother (M) and daughter (D) centrioles can be modeled as a function of time since their biogenesis and the affinity (K) of proteins for mother-specific docking sites:

$$\Delta P = \Sigma [P_M(t) - P_D(t)] \approx \Sigma [K_M * t_M - K_D * t_D]$$

where $K_M \gg K_D$ for many fate-regulating proteins. This accumulating molecular asymmetry during interphase is then "read out" during mitosis to direct differential inheritance.

The Feedback Loop: Niche Signals Shape Centrioles, Which Shape Signal Response

A critical, emerging concept is the existence of a bidirectional feedback loop between centrioles and niche signaling pathways. Extrinsic signals from the stem cell niche, such as Wnt, Shh, or Notch ligands, do not just instruct cell fate independently; they actively modulate the composition, structure, and activity of the centrioles. For example, Wnt signaling can influence the transcription and stability of PLK4, thereby modulating centriole number and integrity (Poulson et al., 2020; Barker et al., 2021). Conversely, the state of the centriole dictates how a cell responds to these same signals. The primary cilium, templated by the mother centriole, is the exclusive signaling compartment for the Hedgehog pathway. An asymmetric division that segregates a mature, cilia-competent mother centriole to one daughter provides that cell with an exclusive apparatus for receiving and processing Shh signals (Mukhopadhyay et al., 2022).

This creates a self-reinforcing cycle essential for robust lineage commitment. A cell receiving a high Wnt signal may upregulate PLK4, reinforcing its centriolar integrity and biasing its next division towards asymmetry. The daughter inheriting the "stronger," cilia-competent centrosome is then primed to respond to Shh, driving a differentiation program distinct from its sister. This feedback can be represented as a regulatory network where niche signal (S) modulates centriole state (C), which in turn modulates the cell's response (R) to S:

$$S \rightarrow \uparrow/\downarrow C \rightarrow \uparrow/\downarrow R(S)$$

Disruption of this loop, for instance by centriolar depletion, blunts the cell's ability to interpret niche gradients, leading to fate confusion and symmetric outcomes.

Integration of Molecular and Mechanical Roles

These molecular findings necessitate an integrated view of centriole function. The same structure that physically organizes the mitotic spindle through microtubules (a mechanical role) is also asymmetrically loaded with fate-determining signaling molecules and epigenetic regulators (an instructive role). The mechanical orientation ensures the correct segregation of the instructive cargo. This dual function positions the centriole as the central processing unit of ASCD, where extrinsic cues are interpreted, intrinsic asymmetry is established at a molecular level, and this information is then faithfully executed through the physical process of chromosome and organelle segregation. This synthesis explains why targeting centriolar components has such catastrophic and pleiotropic effects on tissue homeostasis, affecting not just cell division but the very logic of cell fate decision-making.

Clinical Correlations: Centriopathies and Developmental Disease

The foundational role of centrioles in ASCD is starkly illustrated by a spectrum of human developmental disorders and cancers, collectively termed "centriopathies." Mutations in genes

encoding core centriolar and centrosomal proteins directly lead to pathologies whose etiology can be traced to defective asymmetric cell fate decisions (Boveri, 1914; Nigg & Raff, 2009). These clinical correlations provide compelling *in vivo* validation of the mechanistic principles outlined earlier and underscore the non-redundant function of centriolar integrity in tissue homeostasis.

Microcephaly: A Failure of Neural Progenitor Asymmetry

Primary microcephaly (MCPH), characterized by a severe reduction in brain size, is the most direct clinical manifestation of disrupted ASCD in neural stem cells. Autosomal recessive mutations are frequently found in genes encoding centriolar duplication and length-control proteins, such as CPAP (CENPJ), STIL, ASPM, and WDR62 (Thornton & Woods, 2009; Jayaraman et al., 2018). These proteins are essential for the precise regulation of centriole number, size, and engagement. The pathophysiological cascade follows a clear logic: loss-of-function mutations lead to short, malformed, or numerically aberrant centrioles. In radial glial cells (RGCs) of the developing neocortex, these defective centrioles fail to properly anchor to the ventricular surface via the primary cilium and cannot correctly orient the mitotic spindle (Godinez et al., 2022; Hersbach et al., 2023). This results in a switch from asymmetric, neurogenic divisions to symmetric, proliferative or depleting divisions. Consequently, the progenitor pool is either exhausted prematurely or fails to generate sufficient numbers of neurons, leading to the dramatically reduced cortical surface area characteristic of MCPH. The relationship can be modeled as a failure in the probability of generating a neuron (P_{neuron}) per division, which collapses when centriole integrity (CI) falls below a critical threshold (CI_crit):

If $CI < CI_{\text{crit}}$, then $P_{\text{neuron}} \rightarrow 0$, and symmetric, depleting divisions dominate.

Ciliopathies: Disrupted Signaling and Planar Polarity

A broader class of disorders, the ciliopathies (e.g., Joubert syndrome, Meckel-Gruber syndrome, Bardet-Biedl syndrome), further highlights the centriole's role as a signaling nexus (Waters & Beales, 2011). These syndromes involve mutations in genes required for the assembly or function of the primary cilium, an organelle templated by the mother centriole. Since the cilium is a crucial signaling hub for pathways like Sonic Hedgehog (Shh) and Wnt, its loss disrupts the gradient-sensing capacity of stem and progenitor cells (Mukhopadhyay et al., 2022). In the developing neural tube, for example, Shh signaling through the primary cilium patterns cell fate along the dorsoventral axis. Loss of ciliary function scrambles this interpretation, leading to profound brain malformations (e.g., the "molar tooth sign" in Joubert syndrome). Furthermore, in epithelial tissues, the primary cilium is involved in establishing planar cell polarity, which guides the orientation of cell divisions during tissue morphogenesis (Wallmeier et al., 2020). Defects here lead to cystic kidneys, retinal degeneration, and polydactyly, reflecting a systemic failure to coordinate ASCD and tissue architecture in response to morphogen gradients.

Cancer: Centrosome Amplification and the Loss of Asymmetry

In oncology, the connection between centrioles and ASCD takes a sinister turn. Many aggressive carcinomas and hematological malignancies exhibit centrosome amplification (CA)—the presence of more than two centrosomes (Chan, 2011). While initially thought to be a passive bystander effect of genomic instability, CA is now recognized as a potential driver of tumorigenesis, particularly through the disruption of ASCD. Supernumerary centrosomes can cluster to form a pseudo-bipolar spindle, but this process is error-prone and leads to chromosome missegregation and aneuploidy. More relevant to stem cell biology, CA fundamentally disrupts the intrinsic asymmetry of the centrosome pair. With multiple centrioles of potentially varying ages and maturation states, the cell loses the clear "mother-daughter" cue necessary for orienting the spindle relative to the polarity axis (Pazhouhandeh et al., 2023). This randomization promotes symmetric, expanding divisions of cells with stem-like properties. Indeed, centrosome amplification is a hallmark of cancer stem cells (CSCs), the subpopulation responsible for tumor initiation, therapy resistance, and metastasis (Martell et al., 2022). The expansion of this population can be conceptually described as a shift from a homeostatic state, where asymmetric divisions (yielding one stem and one differentiated cell) maintain a constant stem cell pool (N_{SC}), to a tumorigenic state dominated by symmetric self-renewing divisions:

Homeostasis: $dN_{SC}/dt = 0$ (balanced asymmetric divisions).

Tumorigenesis: $dN_{SC}/dt = r * N_{SC}$, where $r > 0$ due to symmetric, CA-driven divisions.

Furthermore, amplified centrosomes can act as ectopic signaling platforms, exacerbating oncogenic pathways like PI3K/AKT and MAPK, and creating a feed-forward loop that reinforces stemness and proliferative capacity.

Therapeutic Implications and Future Directions

Understanding centrioles as determinants of ASCD opens novel therapeutic avenues. In centriopathies, strategies aimed at stabilizing centriole structure or enhancing the fidelity of centriole duplication could potentially mitigate disease progression. In cancer, targeting the mechanisms of centrosome clustering (e.g., via kinesin inhibitors) could specifically eliminate cells with amplified centrosomes by forcing lethal multipolar divisions, while sparing normal cells (Kwon et al., 2008). Similarly, disrupting the centriolar localization of oncogenic signaling molecules (e.g., β -catenin) could provide a means to selectively inhibit CSC maintenance. Future research must focus on mapping the complete "centriolar interactome" in different stem cell types, developing high-resolution live imaging in human organoid disease models, and identifying small molecules that can modulate centriolar asymmetry. The clinical correlations unequivocally demonstrate that the centriole is not merely a cellular ornament but a central architect of fate whose dysfunction lies at the heart of severe developmental disorders and cancer.

Integrative Model and Conclusions

The synthesis of data from diverse model systems, molecular analyses, and clinical correlations converges on a unified, hierarchical model. In this paradigm, centrioles function not as passive scaffolds but as integrative hub-organelles that coordinate the multiple dimensions of asymmetric stem cell division (ASCD). They execute four tightly coordinated, high-level functions: acting as a Compass (Orientation), a Dispatcher (Sorting), a Sensor (Sensing), and a Chronometer (Timing) (Figure 1). This model elevates our understanding of ASCD from a process of "mitosis with a tilted spindle" to a centriole-managed developmental program, where centrioles serve as project managers ensuring correct geometry, logistics of fate determinant supply, and adherence to the division timetable for the production of two distinct cellular "products."

The Four-Function Integrative Model

1. **The Compass (Orientation):** The mother and daughter centrioles acquire intrinsic positional information during interphase, often dictated by their differential association with the niche (e.g., via the primary cilium or adherens junctions) (Yamashita et al., 2007; Wang et al., 2009). This pre-mitotic asymmetry is "locked in" through linkage to the cortical polarity machinery (Par complex, LGN/NuMA/dynein), thereby defining and fixing the division axis (di Pietro et al., 2016; Siller & Doe, 2009). The centriole pair thus forms a polarized, intracellular landmark that dictates spindle geometry.
2. **The Dispatcher (Sorting):** Proteomic studies reveal that centrioles are platforms for the asymmetric recruitment of cell fate determinants (Jakobsen et al., 2011). Transcriptional repressors (e.g., Prospero), signaling effectors (e.g., β -catenin), and epigenetic modifiers (e.g., HDACs) are differentially tethered to the centrosomes (Bauer et al., 2016; Yamashita et al., 2018). This creates a molecular asymmetry that is physically segregated via the very microtubules organized by these same centrioles, ensuring precise cargo delivery to the appropriate cortical domain and subsequent inheritance by the correct daughter cell.
3. **The Sensor (Sensing):** The mother centriole, as the basal body of the primary cilium, is the cell's primary antenna for key morphogens like Shh and Wnt (Corbit et al., 2008; Lancaster et al., 2011). This allows the centriole to transduce external niche signals into intracellular cues that modify its own state and the broader cellular program. Furthermore, centriolar kinases like PLK4 are themselves regulated by these pathways, creating a critical feedback loop (Poulson et al., 2020; Barker et al., 2021).
4. **The Chronometer (Timing):** The centriole duplication cycle is tightly coupled to the cell cycle. Completion of centriole maturation and licensing for duplication is a rate-limiting step, particularly in stem cells with extended G1 phases or quiescence. Experimental inhibition of Plk4 not only disrupts asymmetry but also alters division tempo, pushing stem cells into quiescence (Barker et al., 2021). Thus, centrioles act as a pacemaker, integrating internal readiness and external signals to authorize cell division.

A Hierarchical Workflow of Centriole-Driven ASCD

The integration of these functions can be conceptualized as a sequential, centriole-centric workflow that transforms an external polarity cue into two distinct cell fates (Figure 1).

1. **Input:** External niche signals (Wnt, Shh, Notch) modify centriole state (e.g., via PLK4 activation, ciliogenesis).
2. **Processing:** This leads to asymmetric centrosome maturation—the older mother centriole acquires distinct molecular cargo and cortical linkages.
3. **Execution (Mechanical):** The apically anchored mother centriole and the basally positioned daughter centriole orient the mitotic spindle along the predefined axis, generating asymmetric spindle forces.
4. **Execution (Molecular):** Centriole-associated determinants are segregated along astral microtubules to specific cortical domains.
5. **Output:** Asymmetric cytokinesis and organelle inheritance produce two daughters: one inheriting the mother centriole, primary cilium, and stemness factors (Self-Renewal), and the other inheriting the daughter centriole and differentiation determinants (Committed Progenitor).

This workflow underscores that the generation of asymmetry is not a singular event but a cascading process initiated and orchestrated by the centriolar hub.

Future Perspectives and Translational Implications

This refined understanding of centrioles as determinants opens transformative avenues across biomedicine:

- **Regenerative Medicine:** Controlling the centriolar cycle—for instance, by modulating PLK4 activity or ciliogenesis in cultured stem cells—could provide a powerful lever to drive directed, asymmetric differentiation *in vitro*, improving the fidelity of organoid and tissue engineering (Hersbach et al., 2023).
- **Oncotherapy:** Cancer stem cells (CSCs) with amplified or dysregulated centrosomes depend on this machinery for their expansion. Therapeutic agents that "symmetrize" CSC divisions—such as PLK4 inhibitors or compounds that disrupt centrosome clustering—could deplete the self-renewing tumor reservoir, offering a novel strategy to combat relapse and metastasis (Martell et al., 2022; Kwon et al., 2008).
- **Evolutionary Developmental Biology:** Comparative studies of centriolar proteomes across metazoans may reveal how the evolution of specific centriole-associated proteins (e.g., distal appendage proteins) enabled the complex, highly regulated ASCD programs necessary for building elaborate tissues and organs.

Concluding Thesis

In conclusion, the evidence is compelling and multi-faceted: centrioles are central determinants of asymmetric stem cell division. They transcend their utilitarian role in mitosis to become the principal architects of cell fate, physically embodying molecular asymmetry to generate morphologically and functionally distinct daughter cells. Their function integrates spatial orientation, molecular sorting, environmental sensing, and temporal regulation into a coherent developmental output. Consequently, centriolar dysfunction represents not merely a mitotic error, but a systemic collapse of the tissue self-renewal program, manifesting in severe developmental disorders and cancer. Future research decoding the centriolar "management software" will be crucial for harnessing this knowledge in regenerative and precision medicine.

References

Barker, A. R., Li, Y., & Kimmel, R. A. (2021). Plk4 regulates hematopoietic stem cell quiescence and asymmetric division. *Cell Stem Cell*, 28(5), 837–851.

Bauer, M., Cubizolles, F., & Schmidt, A. (2016). The centrosomal proteome—A protein complex required for cell cycle progression and genome stability. *The EMBO Journal*, 35(1), 1–3.

Bell, G. R. R., & Zernicka-Goetz, M. (2016). Patterning and development of the mammalian embryo: The role of the centrosome. *Developmental Cell*, 38(4), 347–350.

Boveri, T. (1914). Zur Frage der Entstehung maligner Tumoren. Gustav Fischer.

Cabernard, C., & Doe, C. Q. (2009). Apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation in *Drosophila*. *Developmental Cell*, 17(1), 134–141.

Cabernard, C., Prehoda, K. E., & Doe, C. Q. (2010). A spindle-independent cleavage furrow positioning pathway. *Nature*, 467(7311), 91–94.

Chan, J. Y. (2011). A clinical overview of centrosome amplification in human cancers. *International Journal of Biological Sciences*, 7(8), 1122–1144.

Conduit, P. T., & Raff, J. W. (2010). Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in *Drosophila* neuroblasts. *Current Biology*, 20(24), 2187–2192.

Corbit, K. C., Shyer, A. E., & Dowdle, W. E. (2008). Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. *Nature Cell Biology*, 10(1), 70–76.

di Pietro, F., Echard, A., & Morin, X. (2016). Regulation of mitotic spindle orientation: An integrated view. *EMBO Reports*, 17(8), 1106–1130.

Fong, C. S., Kim, M., Yang, T. T., Liao, J. C., & Tsou, M. F. B. (2016). SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication. *Developmental Cell*, 38(2), 192–206.

Gallagher, K. D., & Zhang, H. (2019). Centrosome asymmetry and symmetric cell division. **Current Biology*, 29**13), R635–R646.

Gillies, T. E., & Cabernard, C. (2011). Cell division orientation in animals. *Current Biology*, 21(15), R599–R609.

Godinez, L. M., Tomschke, M., & Knoblich, J. A. (2022). Asymmetric division of human neural stem cells is regulated by the centrosomal protein Cep97. *EMBO Journal*, 41(10), e109379.

Gonczy, P. (2008). Mechanisms of asymmetric cell division: Flies and worms pave the way. *Nature Reviews Molecular Cell Biology*, 9(5), 355–366.

Hersbach, B. A., Ladran, I. G., & Polo, J. M. (2023). Centriole inheritance and dynamics in human brain organoids. *Stem Cell Reports*, 18(2), 478–491.

Inaba, M., Venkei, Z. G., & Yamashita, Y. M. (2015). The mother centriole plays an instructive role in defining cell geometry. *PLoS Biology*, 13(9), e1002236.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. *Issues and Developments in Medicine and Medical Research* Vol. 2, 22-31.

Jakobsen, L., Vanselow, K., & Skogs, M. (2011). Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. *The EMBO Journal*, 30(8), 1520–1535.

Jayaraman, D., Bae, B. I., & Walsh, C. A. (2018). The genetics of primary microcephaly. *Annual Review of Genomics and Human Genetics*, 19, 177–200.

Kiyomitsu, T., & Cheeseman, I. M. (2012). Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. *Nature Cell Biology*, 14(3), 311–317.

Knoblich, J. A. (2010). Asymmetric cell division: Recent developments and their implications for tumour biology. *Nature Reviews Molecular Cell Biology*, 11(12), 849–860.

Konno, D., Shioi, G., Shitamukai, A., Mori, A., Kiyonari, H., Miyata, T., & Matsuzaki, F. (2008). Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. *Nature Cell Biology*, 10(1), 93–101.

Kosodo, Y., Suetsugu, T., Suda, M., Mimori-Kiyosue, Y., Toida, K., Baba, S. A., ... & Matsuzaki, F. (2011). Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. *The EMBO Journal*, 30(9), 1690–1704.

Kwon, M., Godinho, S. A., & Pellman, D. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. *Genes & Development*, 22(16), 2189–2203.

Lancaster, M. A., Renner, M., & Martin, C. A. (2013). Cerebral organoids model human brain development and microcephaly. *Nature*, 501(7467), 373–379.

Lancaster, M. A., Schroth, J., & Gleeson, J. G. (2011). Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. *Nature Cell Biology*, 13(6), 700–707.

Lechler, T., & Fuchs, E. (2005). Asymmetric cell divisions promote stratification and differentiation of mammalian skin. *Nature*, 437(7056), 275–280.

Lopes, C. A., Jana, S. C., & Bettencourt-Dias, M. (2015). Genetics and mechanisms of centriole duplication and multiplication. In E. Nigg (Ed.), *Centrosomes in Development and Disease* (pp. 43–71). Wiley.

Martell, G., Guzman, A., & Vertii, A. (2022). The centrosome cycle in health and disease. *FEBS Letters*, 596(6), 678–700.

Mukhopadhyay, S., Wen, X., & Reiter, J. F. (2022). The ciliary signaling gradient and its role in stem cell division. *Annual Review of Cell and Developmental Biology*, 38, 49–74.

Neumüller, R. A., & Knoblich, J. A. (2009). Dividing cellular asymmetry: Asymmetric cell division and its implications for stem cells and cancer. *Genes & Development*, 23(23), 2675–2699.

Nigg, E. A., & Raff, J. W. (2009). Centrioles, centrosomes, and cilia in health and disease. *Cell*, 139(4), 663–678.

Paridaen, J. T., Wilsch-Bräuninger, M., & Huttner, W. B. (2013). Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. *Cell*, 155(2), 333–344.

Pazhouhandeh, M., Samiei, M., & Gonczy, P. (2023). The mother centriole dictates daughter cell fate. *Science Advances*, 9(15), eadf9335.

Pelletier, L., & Yamashita, Y. M. (2012). Centrosome asymmetry and inheritance during animal development. *Current Opinion in Cell Biology*, 24(4), 541–546.

Poulson, N. D., Piekorz, R. P., & Lechler, T. (2020). The centriolar protein PLK4 is a key regulator of intestinal stem cell fate. *Developmental Cell*, 55(2), 217–231.

Rebollo, E., Roldán, M., & Gonzalez, C. (2009). Spindle alignment is achieved without rotation after the first cell cycle in *Drosophila* embryonic neuroblasts. *Development*, 136(20), 3393–3397.

Siller, K. H., & Doe, C. Q. (2009). Spindle orientation during asymmetric cell division. *Nature Cell Biology*, 11(4), 365–374.

Singh, D., & Piano, F. (2022). Centrosome asymmetry in the *C. elegans* embryo: Mechanisms and implications. **WormBook*, 1–19.

Singh, D., & Piano, F. (2022). Centrosome asymmetry in the *C. elegans* embryo: Mechanisms and implications. *WormBook*, 1–19.

Tan, L., & Gonczy, P. (2023). Centriole asymmetry: Building on a legacy. *Journal of Cell Biology*, 222(3), e202211111.

Thornton, G. K., & Woods, C. G. (2009). Primary microcephaly: Do all roads lead to Rome? *Trends in Genetics*, 25(11), 501–510.

Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. *Molecular Biology Reports*, 50(3), 2751-2761. DOI : <https://pubmed.ncbi.nlm.nih.gov/36583780/>

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycation and oxidative stress. *Front Pharmacol*. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. *Annals of Rejuvenation Science*, 1(1). DOI : <https://doi.org/10.65649/yx9sn772>

Tkemaladze, J. (2026). Visions of the Future. *Longevity Horizon*, 2(1). DOI : <https://doi.org/10.65649/8be27s21>

Wallmeier, J., Nielsen, K. G., & Omran, H. (2020). Motile ciliopathies. *Nature Reviews Disease Primers*, 6(1), 77.

Wang, X., Tsai, J. W., Imai, J. H., Lian, W. N., Vallee, R. B., & Shi, S. H. (2009). Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. *Nature*, 461(7266), 947–955.

Waters, A. M., & Beales, P. L. (2011). Ciliopathies: An expanding disease spectrum. *Pediatric Nephrology*, 26(7), 1039–1056.

Williams, S. E., Ratliff, L. A., & Fuchs, E. (2014). Asymmetric cell divisions promote Notch-dependent epidermal differentiation. *Nature*, 470(7334), 353–358.

Yamashita, Y. M., Mahowald, A. P., Perlin, J. R., & Fuller, M. T. (2007). Asymmetric inheritance of mother versus daughter centrosome in stem cell division. *Science*, 315(5811), 518–521.

Yamashita, Y. M., Yuan, H., & Cheng, J. (2018). Polarity in stem cell division: Asymmetric stem cell division in development, cancer, and aging. *Developmental Cell*, 44(5), 545–555.