

Strategic Timekeepers

Role of centrioles as biological chronometers of the cell and the organism

Jaba Tkemaladze ¹

Affiliation: ¹ Kutaisi International University , Georgia

Citation: Tkemaladze, J. (2026). Strategic Timekeepers. *Longevity Horizon*, 2(2). DOI :

<https://doi.org/10.65649/62kmtm81>

Abstract

For over a century, centrioles have been defined by their role as architects of the mitotic spindle. This review synthesizes contemporary evidence to propose a paradigm shift: centrioles are strategic timekeepers of the cell. They function not as simple clocks but as **custodians of cellular time**, encoding a history of divisions and stresses through accumulating post-translational modifications and proteomic changes. This molecular archive, stored on one of the cell's most stable structures, is subsequently interpreted by the cell via mechanical, signaling, and proteostatic pathways to dictate fundamental fate decisions—proliferation, differentiation, senescence, or apoptosis. This centriolar timekeeping function operates across a hierarchy, interacting with circadian oscillators, telomeric and epigenetic clocks, and crucially influencing organismal aging through its role in stem cell fate and asymmetric division. We develop an integrative "Centriolar Timeline" model, describing how the accrual of neutral (maturity) and pathological (damage) marks directs cellular trajectories. This model positions the centriole as a unique bio-physical interface that transforms linear chronological time into non-linear biological fate. Re-conceptualizing centrioles as central processors of temporal information has profound implications for understanding development, aging, and diseases like cancer, and suggests novel therapeutic avenues in regenerative medicine and gerontology aimed at modulating this deep-time cellular memory. The Centrosomal Ledger hypothesis is inherently untestable without omics-based approaches, as it posits that cellular memory is encoded not in single molecular markers but in distributed, multivariate structural states of the centrosome. Only system-level omics analyses can capture the weak yet coordinated molecular patterns, temporal integration, and state-dependent signatures required to render this model experimentally falsifiable.

Keywords: Centriole, Cellular Aging, Post-Translational Modifications, Stem Cell Fate, Asymmetric Division, Mitotic Spindle, Organismal Senescence.

Introduction: From Timekeeping Mechanism to Custodian of Time

For over a century, the primary function ascribed to centrioles has been that of a precise, mechanistic timekeeper of the cell cycle. These microtubule-based organelles, embedded within the centrosome, were celebrated for their role in forming the mitotic spindle, ensuring the faithful segregation of chromosomes during cell division (Bornens, 2012). Their duplication cycle—once per cell cycle—was viewed as a metronome, ticking in lockstep with the phases of replication and division. However, emerging research paints a far more sophisticated and dynamic picture. We now understand that centrioles are not passive, rhythmic clocks but strategic custodians of cellular time. They have evolved from simple spindle organizers into complex temporal capsules that encode a rich narrative of a cell's past—its lineage, the number of divisions it has undergone, and the environmental stresses it has endured—and use this archived information to dictate its future: whether it will proliferate, differentiate, senesce, or die (Bazzi & Anderson, 2014; Fong et al., 2016).

This represents a fundamental conceptual shift. A clock measures uniform intervals; a custodian interprets history. The centriole's structure and molecular composition are not static but are progressively modified over time. Each cell division, each exposure to oxidative stress, and each metabolic challenge leaves a subtle, cumulative imprint on the centriole. These imprints, ranging from the accumulation of maternal vs. daughter centriole-specific proteins to post-translational modifications and changes in the pericentriolar material, constitute a form of non-genetic cellular memory (Prosser & Pelletier, 2017). Consequently, the centriole acts as a central processing unit that reads this historical record to inform critical cellular decisions, making it a master regulator of cell fate positioned at the nexus of cellular biography and destiny.

This custodial function operates across two interconnected temporal dimensions: cellular time and organismal time. Cellular time refers to the unique, individualized history of a single cell and its direct precursors. The centriole within a fibroblast, for instance, carries a record of that specific cell's replicative history, which is a key determinant in triggering replicative senescence—a state of permanent cell cycle arrest often linked to the erosion of telomeres and other aging markers. Notably, centriole aberrations, such as amplification or destabilization, can accelerate this senescence program independently, underscoring their role as autonomous sentinels of cellular age (Marteil et al., 2018).

The second dimension, organismal time, pertains to the contribution of centriole function to the aging of the whole organism. This is most critically mediated through the fate of stem cells. Adult stem cells maintain tissue homeostasis by balancing self-renewal and differentiation. Their centrosomes and centrioles are crucial for asymmetric cell division, a process that generates one new stem cell and one progenitor cell fated to differentiate. Age-related deterioration in centriole integrity, cohesion, and positioning disrupts this asymmetry (Venkei & Yamashita, 2018). This leads to depleted stem cell pools, impaired tissue regeneration, and the accumulation of dysfunctional cells—hallmarks of organismal aging. Thus, the centriole's role as

a timekeeper scales from the micro-history of a single cell to the macro-phenomenon of systemic aging.

This article will explore the molecular mechanisms that enable centrioles to function as strategic timekeepers. We will examine the evidence for centrioles as archives of replicative and stress history, detail how this information is translated into fate decisions, and discuss the profound implications of this model for understanding development, aging, and diseases such as cancer, where the normal "timekeeping" functions of centrioles are catastrophically subverted.

Meta-Analysis of Evidence: How Centrioles Encode and Store Temporal Information

The hypothesis that centrioles function as cellular timekeepers requires a molecular and structural basis for information encoding. A growing body of evidence supports a model of direct and indirect information storage, positioning centrioles as complex, hierarchical archives. This section synthesizes findings across studies to delineate the mechanisms by which centrioles record the passage of cellular time and exposure to stress.

Molecular "Imprints" on Centrioles (Direct Storage)

Like tree rings that faithfully record annual growth conditions, centrioles accumulate permanent and semi-permanent molecular modifications that serve as a chronological ledger.

Post-Translational Modifications (PTMs) as "Age Marks"

The tubulin that forms the centriole's core scaffold is subject to progressive PTM accumulation. Polyglutamylation, the addition of glutamate side chains to tubulin, is a quintessential "age mark." The mother centriole, which can persist over multiple cell cycles, carries significantly longer polyglutamate chains than its newly formed daughter. This is not a passive process; these chains create a specific biochemical interface. For instance, the protein pVHL, a tumor suppressor, preferentially binds to highly polyglutamylated microtubules, suggesting that PTM accumulation directly alters the centriole's interactome and signaling output (Mahalingan et al., 2020). Similarly, acetylation of α -tubulin at lysine 40 (K40) is a hallmark of stable, long-lived microtubules. Its accrual on mother centrioles correlates with reduced microtubule dynamics, reflecting a transition from a plastic, growth-oriented state to a more rigid, mature one (Xu et al., 2017).

Beyond enzymatic modifications, centrioles are susceptible to stochastic molecular damage that provides a direct signature of chronological aging. The exceptionally long half-life of core centriolar proteins like CEP135 and CEP164 makes them prime targets for the accumulation of advanced glycation end-products (AGEs) and carbamylation, non-enzymatic modifications driven by metabolic by-products (Rogowski et al., 2009). Furthermore, oxidative stress leaves a durable imprint through the oxidation of cysteine residues in scaffolding proteins such as SAS-6.

This oxidation can alter centriole stability and duplication fidelity, transforming a transient stress event into a permanent structural memory (Wang et al., 2021).

Proteomic "Memory" and Fate Determinants

The mother centriole's identity is defined by the stepwise acquisition of a distinct set of proteins, including distal and subdistal appendage proteins. This asymmetry is not binary but a continuum. Proteomic analyses reveal that the mother centriole continuously enriches for specific classes of proteins over time, including molecular chaperones (e.g., CCT/TRiC complex) and components of the ubiquitin-proteasome system. This suggests a built-in "maintenance and quality control" module that scales with centriolar age (Jakobsen et al., 2011).

Crucially, centrioles can act as physical scaffolds for key signaling molecules, effectively "remembering" past signaling contexts. For example, the transcription regulator YAP/TAZ, a central effector of the Hippo pathway controlling cell proliferation, can be sequestered at the centrosome. The retention or release of such Centriole-Associated Fate Determinants (CAFDs) provides a direct mechanistic link between the centriole's physical state and the cell's transcriptional program. A simplified conceptual model of this storage can be represented as:

$$\text{Cellular Age Index (CAI)} \approx \sum (\text{PTMi} * \text{wi}) + [\text{CAFD}]$$

where CAI is a theoretical aggregate measure of centriole age/information load, PTMi represents the concentration or intensity of a specific PTM (e.g., polyglutamylation level), wi is a weighting factor for its stability and functional impact, and [CAFD] represents the concentration of stably bound fate-determining proteins.

Functional "Traces" (Indirect Storage through Function)

Beyond molecular marks, the history of a centriole is embedded in its functional capacities, which degrade or alter with time and experience.

The Replication Counter ("Cellular Odometer")

Each centriole duplication cycle is a precise, templated event. The hypothesis posits that minor structural imperfections or the energetic burden of orchestration leave a cumulative trace, much like a mechanical gear wearing down. Experimental evidence supports this. In cells where the centriole duplication cycle is forcibly uncoupled from the DNA cycle—through overexpression of the key regulator PLK4 or in certain polyploid cancer cells—centrioles lose their synchrony, leading to centriole overduplication, structural aberrations, and mitotic chaos (Nigg & Holland, 2018). This indicates that the fidelity of the "counting" mechanism itself is dependent on the integrity of the templating mother centriole. When the historical template is damaged or the process is forced, the counter malfunctions.

The Stress Event Logger

Centrioles and the pericentriolar material are sensitive hubs for cellular stress responses. Exposure to heat shock, oxidative stress, or UV irradiation triggers the rapid recruitment of

specific proteins to the centrosome. Notably, the molecular chaperone HSP90 is recruited to centrosomes under thermal stress to stabilize client proteins. Critically, some of these alterations can be priming events. A study by Conroy et al. (2022) demonstrated that a sub-lethal dose of a centrosome-disrupting agent led to the sustained recruitment of DNA repair proteins to the centrosome, which conferred enhanced resistance to a subsequent, higher dose. This demonstrates that the centrosome can retain a functional memory of past insults, altering its future resilience.

In conclusion, the centriole is not a passive cellular component but a dynamic, information-rich organelle. It employs a dual strategy of direct molecular engraving (PTMs, proteomic composition) and indirect functional encoding (replication fidelity, stress memory) to maintain a comprehensive record of cellular life. This record, in turn, provides the data upon which critical decisions of proliferation, senescence, and death are computed, solidifying the centriole's role as a strategic timekeeper.

Mechanisms for "Reading" Temporal Information

The centriole's role as a custodian of time is predicated on the cell's ability to accurately interpret the molecular and functional records it harbors. This "reading" process translates the static history encoded in centriolar structure into dynamic biological decisions. A meta-analysis of current research reveals several sophisticated, interconnected pathways through which the cell perceives and acts upon the information stored within its centrioles.

Mechanical Reading (Via the Microtubule Cytoskeleton)

The centriole's most fundamental output is the nucleation and organization of microtubules (MTs). Consequently, changes in the centriole's physical state are directly transmitted to the entire cytoskeletal network. The "Mechanical State Hypothesis" proposes that an "old" centriole, burdened with accumulated PTMs like polyglutamylation and acetylation, generates a less dynamic and more rigid radial MT array (Mahalingan et al., 2020; Xu et al., 2017).

This altered mechanical output is detected by specialized sensor proteins at the growing plus-ends of MTs, known as +TIPs (Microtubule Plus-End Tracking Proteins). Proteins such as EB1 and CLASPs dynamically associate with these ends, regulating MT growth, stability, and interactions with the cell cortex and organelles. Changes in centriolar age that affect MT dynamics would alter the dwell time, localization, and activity of these +TIPs. For instance, a hyper-stable MT array from an aged centrosome might lead to reduced EB1 turnover. This mechanical signal can be propagated to the nucleus; for example, the LINC complex, which bridges the cytoskeleton and the nuclear lamina, can transmit cytoskeletal tension into changes in chromatin organization and gene expression (Lomakin et al., 2015). Thus, the centriole's age can be read indirectly through the mechanical properties of the cellular scaffold it builds.

Signaling Reading (Via the Primary Cilium and CAFDs)

When functioning as the basal body, the mother centriole nucleates the primary cilium, a critical signaling antenna. The integrity of the cilium is exquisitely sensitive to the structural and compositional state of its basal body. An aged or stressed centriole often leads to the formation of a defective cilium with impaired intraflagellar transport (IFT), disrupting the reception and processing of key morphogens like Sonic Hedgehog (Shh) (Breslow & Holland, 2019).

This disruption alters critical transcriptional programs. For example, proper Shh signaling is required for the maintenance of stem cell niches and fate decisions during development and tissue homeostasis. A defective cilium sends an altered signal, which the nucleus may interpret as a cue to exit a proliferative state and initiate differentiation or senescence. This pathway directly links centriolar "wear and tear" to systemic changes in cell fate via canonical signaling cascades.

Furthermore, the Centriole-Associated Fate Determinants (CAFDs) act as direct signal transducers. The sequestration or release of transcription factors (e.g., YAP/TAZ) or kinases (e.g., GSK3 β) from the centrosomal scaffold in response to centriolar status provides a rapid, non-genomic route to alter gene expression. The binding affinity for these factors is likely modulated by the centriole's PTM profile, creating a direct biochemical link between the organelle's history and the nuclear transcriptional machinery.

Proteostatic Reading

The accumulation of non-enzymatically damaged (e.g., glycated) or aggregation-prone proteins on aging centrioles represents a form of localized proteostatic stress. The cell interprets this through dedicated quality control systems. Molecular chaperones, such as those from the HSP70 and HSP90 families, are recruited to manage misfolded proteins (Conroy et al., 2022). Simultaneously, ubiquitin ligases may target damaged centriolar components for degradation.

Chronic engagement of these systems can have global consequences. Persistent proteostatic challenge at the centrosome can spill over, activating broader cellular stress responses like the Unfolded Protein Response (UPR). Sustained, low-level UPR signaling is a known driver of cellular senescence. Therefore, the centriole acts as a canary in the coal mine; its proteinaceous "aging marks" continuously recruit and titrate the cell's finite proteostatic resources. When these resources are overwhelmed, it triggers a systemic stress response that halts proliferation, effectively "reading" centriolar decay as a signal for organismal aging at the cellular level.

Epigenetic Reading

Perhaps the most direct pathway to long-term fate change is through epigenetic reading. Evidence suggests that certain CAFDs have dual roles as epigenetic modifiers. For example, some centrosomally-localized proteins can translocate to the nucleus under specific conditions and influence histone modification or DNA methylation patterns.

A conceptual model for this integrated reading system can be proposed:

$$\text{Fate Output} = f(\Sigma(\text{Mechanical Signal} * w_1) + \Sigma(\text{Signaling Signal} * w_2) + \Sigma(\text{Proteostatic Signal} * w_3) + \Sigma(\text{Epigenetic Signal} * w_4))$$

Here, the final cellular fate (proliferation, senescence, etc.) is a function (f) of the integrated sum of signals from each reading pathway. Each pathway's signal strength is weighted (w_1, w_2 , etc.) by cellular context (cell type, metabolic state, external signals). The proteostatic signal, for instance, could be approximated by the ratio of quality control proteins bound to the centriole versus free in the cytoplasm: Proteostatic Signal Index \approx [Centriole-bound Ubiquitin Ligases] / [Cytoplasmic Ubiquitin Ligases]. A rising index indicates escalating centriolar stress.

In conclusion, the cell does not possess a single "reader" for centriolar time. Instead, it employs a multi-layered, integrated sensor network that interprets the organelle's state mechanically, biochemically, and functionally. This redundant and robust system ensures that the historical information archived in the centriole is faithfully translated into appropriate, often irreversible, decisions that govern cellular and organismal lifespan.

Role in the Hierarchy of the Organism's Biological Clocks

Biological aging is orchestrated by a multi-tiered network of timing mechanisms, ranging from rapid molecular oscillations to slow, cumulative decay of systems. Within this hierarchy, centrioles occupy a unique and essential niche. They are not merely passive components but active physical integrators that both influence and are influenced by other aging clocks, positioning themselves as central hubs in the temporal regulation of cellular and organismal life.

Level 1: Integration with Fast Oscillators (Circadian and Metabolic Clocks)

At the fastest tier are molecular oscillators like the circadian clock, governed by transcriptional-translational feedback loops of genes such as *Clock* and *Bmal1*. Intriguingly, this system exhibits a direct spatial and functional connection to the centrosome. Core circadian proteins, including *PER2* and *BMAL1*, have been shown to localize to the centrosome and the base of the primary cilium (Wils et al., 2021). This is not mere coincidence; the cilium is critical for circadian function. Disruption of ciliogenesis in hepatocytes severely dampens circadian rhythms in gene expression and metabolic output, such as glucose homeostasis (Gabriel et al., 2021). This suggests that the centriole/basal body acts as a platform for organizing and amplifying circadian signals. The temporal information from the 24-hour circadian cycle may be integrated at the centrosome with longer-term centriolar age data, allowing the cell to align its replicative history and stress load with daily metabolic and repair cycles.

Level 2: Crosstalk with Replicative Counters (Telomeric and Epigenetic Clocks)

The classic "slow" clocks of aging are the telomere, a DNA-based replication counter, and the epigenetic clock, defined by predictable changes in DNA methylation patterns (Horvath, 2013). Centrioles operate in parallel as a structural-functional counter, engaging in critical crosstalk with these systems.

While telomeres shorten with each division, centrioles accrue structural modifications. These pathways can converge to drive senescence. Centriole amplification or dysfunction induces chronic p53 activation via centrosome clustering errors and genomic instability (Marteil et al., 2018). This persistent DNA damage response can accelerate telomere attrition. Conversely, telomere dysfunction can impact centrioles, as DNA damage signaling pathways (e.g., involving 53BP1) are recruited to disrupted centrosomes, further destabilizing them (Conroy et al., 2022). Similarly, the epigenetic clock may be influenced by centriolar state. As discussed, the release of CAFDs from the centrosome can alter nuclear transcription. Persistent signals from an aged centriole could promote an epigenetic drift toward a senescence-associated signature. This creates a feedback loop: centriole aging promotes epigenetic aging, which in turn may lock the cell in a state where centriole rejuvenation is impossible.

Level 3: Driving Systemic Integrators (Stem Cell and Niche Clocks)

The decline of stem cell function is a pillar of organismal aging. Centrioles act as local drivers of this systemic decline within tissue-specific stem cell niches. In neural stem cells of the subventricular zone (SVZ), for example, centrioles are crucial for asymmetric divisions that generate one self-renewing stem cell and one differentiating progenitor. With age, centrosomal integrity and orientation falter, leading to symmetric differentiating divisions that deplete the stem cell pool (Venkei & Yamashita, 2018). This cell-autonomous centriole-driven failure directly contributes to the aging of the brain's regenerative niche.

The aging of centrioles in other somatic cells also fuels systemic inflammation ("inflammaging") through the senescence-associated secretory phenotype (SASP). Cells with dysfunctional centrioles are prone to become senescent, and their SASP can disrupt local tissue architecture and stem cell function systemically.

The Unique Ontology of the Centriolar Clock

The centriolar clock differs fundamentally from other aging timers. Telomeres and epigenetic marks are informational codes—sequences of nucleotides or patterns of methyl groups on DNA. Their dysfunction primarily disrupts information flow (transcription, replication).

In stark contrast, centrioles are physical machines. Their functional state—their structural integrity, nucleation capacity, and molecular composition—is the time readout. Their failure directly and immediately disrupts core physical cellular processes: chromosome segregation (causing aneuploidy), cell polarity (disrupting migration and tissue organization), and ciliary

signaling (altering developmental and homeostatic pathways). This gives the centriolar clock a unique, actionable primacy; it doesn't just report time, its deterioration actively creates the dysfunctional cellular state we recognize as aged.

A hierarchical network model can illustrate this relationship:

$$\text{Systemic Aging} = \int [\Sigma (\text{Stem Niche Failure}_i) + \text{Inflammaging}] dt$$

$$\text{Stem Niche Failure}_i \approx f(\text{Centriole State}_{\{\text{stem cell}\}}, \text{Epigenetic State}, \text{Telomere Length})$$

$$\text{Centriole State} = g(\text{Replication Count}, \text{Stress History}, \text{Circadian Input})$$

This conceptual framework posits that organismal aging (the integral over time) stems from the sum of failing stem cell niches and systemic inflammation. The failure of any given niche (i) is a function (f) of the states of its key cellular clocks. The centriole state itself is a function (g) of its replication history, stress exposure, and integration of faster oscillatory signals. This places the centriole as a critical, middle-layer processor in the biological timing network, translating lived experience into cellular fate and, ultimately, tissue and organismal aging trajectories.

Comparative Analysis Across Cell Types and Organisms

The function of centrioles as timekeeping organelles is not uniform; it exhibits remarkable plasticity and context-dependence across different cell lineages and species. This comparative analysis reveals how the "time storage" paradigm adapts to specific biological requirements, from immortality in the germline to terminal differentiation in somatic tissues, and highlights the evolutionary choices made by different lineages.

The Germline: Preserving Immortality Through Strict Asymmetry

The germline represents the ultimate challenge for a timekeeping system: it must transmit genetic and cellular material indefinitely across generations without accruing the degradative marks of age. Evidence suggests that centrioles in the germline employ a strategy of strict asymmetric inheritance. During male gametogenesis in many species, the "oldest" mother centriole is selectively retained and modified to become the basal body of the sperm flagellum, while the daughter is degraded or discarded (Fishman et al., 2018). This conserved inheritance pattern implies a mechanism to minimize the transfer of accumulated temporal damage. Consistent with this, mutations in genes encoding core centriolar proteins (e.g., SPAG5, CEP135) often result in sterility due to catastrophic failures in meiosis and gamete formation (Sha et al., 2019). The germline thus appears to operate under a "minimal damage inheritance" hypothesis, where stringent quality control and selective templating reset the centriolar clock for the next generation, preserving cellular immortality.

Adult Somatic Stem Cells: Asymmetry with Leakage and Niche Aging

In contrast to the germline, somatic stem cells (SCs) exist in a state of "asymmetry with leakage." The mother centriole is preferentially retained in the self-renewing stem cell daughter during asymmetric division, a process governed by differential engagement of the centrosome with the cortical polarity machinery (Venkei & Yamashita, 2018). However, this process is imperfect. Over time, stochastic errors in segregation lead to the gradual accumulation of centriolar damage within the SC pool. This manifests as organ-specific aging. For instance, in muscle satellite cells, centrosomal dysfunction contributes to the decline in regenerative capacity seen in sarcopenia. In hematopoietic stem cells, similar age-related centrosomal alterations correlate with diminished lymphoid output and myeloid bias, a hallmark of immunosenescence (Geiger et al., 2013). Here, the centriolar clock ticks toward the eventual exhaustion of the regenerative niche.

Terminally Differentiated Cells: A Paused Clock and Static Sensing

In many post-mitotic, differentiated cells (e.g., neurons, cardiomyocytes, photoreceptors), the mitotic clock is effectively paused. Centrioles often disengage from the cell cycle, losing their duplicative function. The mother centriole permanently converts into a basal body, anchoring a non-motile primary cilium that acts as a sensory antenna. In this state, the organelle is less a "counter" and more a static sensor. Its timekeeping role shifts from measuring divisions to monitoring the duration of exposure to the extracellular environment. Age-related dysfunction of this static structure does not trigger proliferation errors but instead leads to ciliopathies of aging: loss of olfaction due to defective ciliary signaling in olfactory neurons, hearing loss from dysfunctional kinocilia in hair cells, or retinal degeneration. The temporal information here is not replicative history but cumulative exposure time.

Cancer Cells: A Hijacked and Distorted Clock

Cancer represents a pathological subversion of the centriolar timekeeping system. Tumors frequently exhibit centriole amplification (numerical aberrations) and structural over-elongation, effectively "resetting" or "distorting" the cellular clock (Marteil et al., 2018). This disrupts the normal counting mechanism, allowing for unscheduled proliferation. The loss of centriole asymmetry contributes to a loss of cell fate control, promoting symmetric proliferative divisions. However, this hijacking comes at a cost. Supernumerary centrosomes drive chromosomal instability (CIN) through multipolar spindle formation and subsequent clustering errors. This creates a paradox: while the centriolar clock is disabled to allow immortality, its distortion introduces a persistent source of genomic chaos, which tumors must manage to survive. The centriolar state in cancer can thus be described by a Fitness Instability Trade-off:

Oncogenic Fitness \approx Proliferative Gain from Clock Reset – Genomic Cost of Centriolar Aberrations

Where a high level of aberrations may initially boost proliferation but eventually threaten viability through excessive CIN.

Evolutionary Perspective: From Tetrahymena to Flowering Plants

Examining centrioles across the tree of life underscores their conserved role as structural organizers and the uniqueness of their animal-specific timekeeping function. In ciliated protozoa like *Tetrahymena*, basal bodies (homologous to centrioles) are inherited with extreme precision to maintain cellular geometry and ciliary rows. Disruption leads to immediate loss of form and function, highlighting their role as architects of cellular pattern rather than long-term timekeepers (Bayless et al., 2016).

Most strikingly, flowering plants have completely dispensed with centrioles. They organize mitotic spindles using alternative mechanisms, such as microtubule nucleation from the nuclear envelope. This demonstrates that centrioles are not an obligatory component of cell division. Their evolutionary retention and elaboration in animals, particularly in the context of complex multicellularity, motility, and asymmetric cell division, suggests they were co-opted for a higher-order regulatory role—the very role of a strategic timekeeper that integrates historical experience with fate decisions, a feature less critical in sessile, plastic plant development.

In conclusion, the centriole's function as a timekeeper is a versatile module adapted to cellular destiny. It can be rigorously reset (germline), slowly leak (stem cells), permanently paused (differentiated cells), or catastrophically hacked (cancer). This comparative analysis solidifies its position not as a universal metronome, but as a programmable logic controller in the circuitry of cellular life history, with its coding and output finely tuned to the needs of the cell type and organism.

Evolutionary Perspective: Why Centrioles?

The proposal that centrioles serve as principal cellular timekeepers prompts a fundamental evolutionary question: among all cellular components, why would this specific organelle be selected for such a critical role? A comparative and functional analysis reveals that centrioles possess a unique combination of structural, mechanical, and hereditary properties that pre-adapted them to become the cell's custodians of temporal information.

Preadaptive Properties for Timekeeping

Several inherent features of centrioles make them uniquely suited for this function:

- 1. Exceptional Structural Stability:** Centrioles are among the most stable non-membranous structures in the cell. Their core, composed of highly stable microtubule triplets arranged in a nine-fold symmetric cartwheel, exhibits remarkable resilience to chemical and physical disruption. This structural longevity is a prerequisite for a long-term information storage device. Unlike transient signaling complexes, a centriole can persist through multiple cell cycles, providing a durable substrate onto which a history of modifications can be inscribed (Nigg & Holland, 2018).

2. Obligatory Inheritance: In animal cells, each daughter cell must inherit centrioles to form a functional centrosome. This non-negotiable inheritance guarantees the transmission of the "temporal capsule" to the next cellular generation, ensuring continuity of information. This is distinct from other potential aging markers; for instance, a buildup of oxidized proteins in the cytoplasm can be asymmetrically partitioned or diluted, but the centriole is systematically passed on.

3. Central Integrative Position: The centriole resides at a unique nexus of core cellular processes. It is the master organizer of the microtubule cytoskeleton, dictating cell shape, polarity, and intracellular transport. It is the basal body for the formation of cilia and flagella, essential for motility and sensory reception. It is the core of the mitotic spindle apparatus. This integrative hub position means that any change in the centriole's state—its age or damage load—has direct, amplified consequences for cell division, migration, signaling, and sensing (Bornens, 2012). A timekeeping signal stored here can efficiently commandeer multiple downstream effectors.

4. Inherent Structural Asymmetry: The centriole pair is intrinsically asymmetric from the moment of its assembly: a "mother" bearing distal appendages and a "daughter" lacking them. This built-in non-equivalence provided the evolutionary raw material for the development of asymmetric segregation during cell division. Differential inheritance of a modified "old" mother versus a "new" daughter centriole became a powerful mechanism to dictate divergent cell fates, a cornerstone of differentiation in metazoans (Venkei & Yamashita, 2018).

An Evolutionary Trajectory: From Motility to Division to Timekeeping

The evolutionary history of centrioles reveals a plausible pathway for their recruitment into a timekeeping role, moving from a structural to an informational function.

Stage 1: Origins in Motility. The most ancient function of the centriole's ancestor (the basal body) was likely to nucleate the axoneme of flagella or cilia in unicellular eukaryotes, providing locomotion or environmental sensing (Carvalho-Santos et al., 2011). Their stability was key to maintaining cellular propulsion.

Stage 2: Co-option for Fidelity in Division. In lineages leading to animals, these stable structures became associated with the mitotic spindle poles, improving the accuracy of chromosome segregation. This link to reproduction made them essential for genomic fidelity. The machinery for their precise, once-per-cycle duplication evolved, establishing them as cell cycle-embedded structures.

Stage 3: Enabling Complex Multicellularity. With the advent of metazoans, the pre-existing asymmetry of the centriole pair was exploited to orchestrate asymmetric cell divisions, allowing a single fertilized egg to generate diverse, differentiated tissues. The centriole transitioned from a mere organelle of division to a determinant of cell fate.

Stage 4: Emergence of the Timekeeper. Finally, in long-lived organisms with constant tissue turnover (like mammals), a new selective pressure emerged: the need for individual cells to

"remember" their replicative history and exposure to stress to appropriately regulate proliferation, senescence, and apoptosis. The centriole, with its stability, obligatory inheritance, and central role in fate determination, was the pre-adapted candidate. Molecular systems evolved to write information (PTMs, protein retention) onto its stable scaffold and to read it back via its functional outputs (cilia, spindle integrity). This culminated in its role as a strategic timekeeper.

A simplified evolutionary fitness model can illustrate this transition:

Fitness (Unicellular) $\approx f(\text{Motility Efficiency, Division Speed})$

Fitness (Early Metazoan) $\approx f(\text{Developmental Patterning via Asymmetric Division})$

Fitness (Complex, Long-lived Metazoan) $\approx f(\text{Tissue Homeostasis, Cancer Suppression}) + g(\text{Cellular Memory})$

Here, the centriole's contribution to fitness shifts. In late-stage evolution, a new function, $g(\text{Cellular Memory})$ —enabled by centriolar timekeeping—becomes critical for suppressing neoplasia and managing aging tissues, adding a layer of regulation absent in simpler organisms.

This evolutionary perspective explains why plants, despite their complexity, thrive without centrioles. Their sedentary lifestyle, rigid cell walls, and different developmental strategies (less reliance on precise asymmetric divisions of motile cells) did not select for the same integrative, timekeeping solution. The centriolar clock is thus not a universal biological necessity but a brilliant evolutionary exaptation—a structure originally shaped for motility and division that was later co-opted to become the archival heart of cellular time in active, long-lived, regenerating animal bodies.

Experimental Validation and Falsifiability

The proposition that centrioles act as cellular timekeepers is a testable, and therefore falsifiable, scientific hypothesis. It makes specific predictions about causality—that the accrued temporal information on centrioles is not merely correlative but actively directive of cell fate. Outlined here are critical experimental approaches designed to validate or falsify core tenets of this hypothesis, moving the model from a compelling narrative to a framework for rigorous experimental interrogation.

Prediction 1: Artificial "Rejuvenation" of Centrioles Should Reverse Cellular Age Phenotypes

Rationale: If the accumulation of age-related modifications (e.g., PTMs, oxidized proteins) on centrioles is a cause of cellular aging (e.g., stem cell exhaustion), then their targeted removal should restore youthful function.

Experimental Design: Employ precision CRISPR-based recruitment systems (e.g., dCas9 fusions or SunTag systems) to localize rejuvenating enzymes specifically to the centriole in aged stem cells. For instance:

- Targeted Deacetylation: Recruit a potent deacetylase like SIRT2 to remove acetylation marks from centriolar α -tubulin (K40).
- Redox Repair: Recruit selenoproteins or thioredoxin systems to reduce oxidized cysteine residues on centriolar scaffold proteins like SAS-6 or CEP135 (Wang et al., 2021).
- Clearance of AGEs: Recruit enzymes like fructosamine-3-kinase (FN3K) or glyoxalase I to reverse or degrade advanced glycation end-products.

Falsifiable Outcome: The hypothesis is falsified if, following successful enzymatic "cleansing" of aged centrioles, the aged stem cells show no significant improvement in key functional assays: proliferative capacity *in vitro*, ability to reconstitute a tissue niche *in vivo* (e.g., in transplantation assays), or transcriptional reversion from a senescence-associated secretory phenotype (SASP). Success in these assays would provide direct causal evidence.

Prediction 2: Transfer of Centrioles with Defined PTM Profiles Should Transfer "Age" Information

Rationale: If centrioles store information as a direct molecular code, then transplanting a centriole with a defined modification signature into a naive cell should transfer the corresponding "age" state.

Experimental Design: Develop an *in vitro* centriole modification and transplantation pipeline.

1. Isolation: Isolate intact centrioles from young, proliferative cells via biochemical fractionation.
2. Artificial "Aging": Treat isolated centrioles *ex vivo* with chemical modifiers: e.g., acetyl-CoA for acetylation, methylglyoxal to induce glycation, or reactive oxygen species (ROS) generators to cause oxidation.
3. Transplantation: Microinject these "synthetically aged" centrioles into young recipient cells (e.g., early-passage fibroblasts) whose endogenous centrosomes have been inactivated via laser ablation or pharmacological disassembly (e.g., using centrinone).
4. Control: Inject centrioles from young cells treated with a vehicle control.

Falsifiable Outcome: The hypothesis is falsified if cells receiving "aged" centrioles exhibit no discernible difference in behavior from those receiving "young" centrioles. Key readouts would include: rate of entry into senescence, transcriptomic profiles, changes in microtubule dynamics (via +TIP tracking), and sensitivity to genotoxic stress. A positive result would be powerful evidence for the sufficiency of centriolar PTMs in encoding age.

Prediction 3: Centriole-Less Organisms Must Utilize Fundamentally Different Cellular Aging Trajectories

Rationale: If centrioles are a universal and central pillar of the cellular aging program in organisms that possess them, their absence should necessitate a qualitatively different mechanistic architecture for cellular senescence and stem cell decline.

Experimental Design: Conduct a comparative systems biology analysis of aging in a centriole-bearing animal model (e.g., *Mus musculus*) versus a complex, multicellular organism that lacks centrioles (e.g., the flowering plant *Arabidopsis thaliana*). Focus on somatic stem cell equivalents (e.g., hematopoietic stem cells vs. root apical meristem cells).

- Molecular Drivers: Use proteomics and phosphoproteomics to identify proteins whose accumulation or modification most strongly correlates with stem cell functional decline in each system.
- Structural Correlates: In plants, investigate the role of alternative, stable structures—such as the preprophase band, cell wall integrity sensors, or plastid (chloroplast) quality control—as potential timekeeping hubs.
- Intervention Response: Test whether interventions known to delay animal aging (e.g., caloric restriction mimetics, NAD⁺ boosters) have conserved or divergent effects on plant stem cell longevity.

Falsifiable Outcome: The hypothesis is strongly supported if the principal molecular signatures and structural determinants of stem cell aging are non-overlapping between the two kingdoms. It would be weakened or falsified if a highly conserved, centriole-independent pathway (e.g., nucleolar stress, mitochondrial dysfunction) is found to be the dominant, universal driver, relegating centrioles to a secondary, animal-specific modulatory role.

A Mathematical Framework for Hypothesis Testing

The predictions can be framed within a quantitative model to assess the contribution (C) of centriolar state to an aging phenotype (P), such as proliferation rate or gene expression signature:

$$\Delta P_{\text{observed}} = C_{\text{centriolar}} * \Delta S_{\text{centriolar}} + C_{\text{other}} * \Delta S_{\text{other}} + \varepsilon$$

Where:

- $\Delta P_{\text{observed}}$ is the measured change in the phenotype (e.g., reduction in proliferation).
- $\Delta S_{\text{centriolar}}$ is the experimentally induced change in centriolar state (e.g., level of a specific PTM).
- $C_{\text{centriolar}}$ is the weighting coefficient representing the causal contribution of the centriole.
- ΔS_{other} and C_{other} represent changes and contributions from all other aging systems (telomeres, epigenome, mitochondria).
- ε is error.

The rejuvenation experiment aims to set $\Delta S_{\text{centriolar}}$ to a negative value (reversal of marks) and measure if $\Delta P_{\text{observed}}$ becomes positive (rejuvenation). A result where $C_{\text{centriolar}}$ is not significantly different from zero would falsify the core hypothesis.

In conclusion, the centriolar timekeeper model is robustly falsifiable. The proposed experiments—ranging from targeted molecular editing and organelle transplantation to cross-kingdom comparative biology—provide a clear roadmap to distinguish between a truly instructive role for centrioles in aging and a fascinating but epiphenomenal correlation. The outcome of such research will not only test this specific hypothesis but also refine our fundamental understanding of where and how biological time is computed within the cell.

Philosophical and Conceptual Implications

The framework of centrioles as cellular timekeepers extends beyond a mechanistic biological model; it challenges foundational paradigms in cell and developmental biology, offering a revised perspective on inheritance, memory, and the very nature of cellular time. This conceptual shift carries significant philosophical and worldview implications, inviting us to reconsider where and how a cell's history and future are inscribed.

From Genetic Determinism to Structural Inheritance

The central dogma of molecular biology established DNA sequence as the primary and sovereign repository of heritable information. The centriole timekeeper hypothesis expands this view, arguing for a principle of structural inheritance (Lynch et al., 2021). A cell's fate is not dictated solely by its genome but is co-determined by the physical and molecular state of its organelles, which are themselves templates for their own replication. The mother centriole, with its accrued PTMs, retained proteins, and subtle structural alterations, is a non-genetic template passed to daughter cells. This is not Lamarckism but a form of cytoplasmic or architectural heredity that operates alongside genetics. It explains how two genetically identical cells—such as a stem cell and its differentiated progeny—can embark on divergent trajectories based on the inheritance of a structurally asymmetric centrosome. The cell's "software" (DNA) runs on "hardware" (organelles) whose wear and historical configuration directly shape the output.

The Materiality of Cellular Time

The hypothesis materializes the abstract concept of "cellular age." Age is not merely the chronological time since a cell's birth or the number of elapsed divisions. Rather, it is a quantifiable, physical state of a core cellular machine (Nigg & Holland, 2018). This state can be represented as a composite variable:

$$\Psi_{\text{age}} = f(\sum[\text{PTM}_i], [\text{CAF}_j], \sigma_{\text{struct}}, \Phi_{\text{MT}})$$

Where Ψ_{age} (Psi, for historical state) is a function of: the concentrations of specific post-translational modifications ($\sum[PTM_i]$); the levels of bound Centriole-Associated Fate Determinants ($[CAFID_j]$); a measure of structural fidelity (σ_{struct}); and the functional output in microtubule nucleation and dynamics (Φ_{MT}). In this view, senescence is not just a program triggered by a clock but the physical degradation of a critical system to a point of functional failure. Time, at the cellular level, becomes an emergent property of structural decay and molecular accrual on specific substrates.

Organelle-Level Memory Beyond the Epigenome

Epigenetics revolutionized our understanding of cellular memory by showing that experiences can be recorded as chemical marks (methylation, acetylation) on chromatin. The centriole model proposes a parallel, organelle-based mnemonic system. The cell "remembers" its replicative history through the layered PTMs on centriolar tubulin, its exposure to oxidative stress through oxidized residues on SAS-6, and past metabolic conditions through glycated CEP proteins. This is a form of anatomically localized memory, distinct from and complementary to nuclear epigenetics (Bré et al., 2021). It offers a mechanistic explanation for how transient signals—a pulse of ROS, a single round of faulty division—can have long-term, even permanent, consequences for cell behavior, because they leave a permanent scar on a physically inherited structure.

Redefining the Unit of Selection and Aging

This perspective subtly reshapes evolutionary and gerontological thought. If centriolar state influences fitness by determining stem cell longevity and neoplastic risk, then natural selection may act not only on genes but on the systems that ensure the fidelity of organelle-based information transfer. Genes encoding centriolar proteins, their modifying enzymes, and quality control factors become paramount. In aging research, it shifts the focus from seeking a single master clock (telomeric, epigenetic, metabolic) to understanding a network of interdependent timers. The centriole is a crucial node in this network because its failure directly corrupts cellular mechanics. It forces a holistic view where the aging of the organism is seen as the integrated degradation of both information (DNA, epigenome) and machinery (organelles like centrioles and mitochondria).

In conclusion, viewing centrioles as strategic timekeepers is more than a biological hypothesis; it is a paradigm that enriches our philosophical conception of the cell. It elevates organelles from passive structural components to active participants in heredity and fate determination. It grounds the ephemeral flow of time in the tangible wear of molecular machines. By recognizing that cells archive their life stories not only in the nucleus but also in the very architecture of their cytoskeletal core, we gain a deeper, more integrated understanding of the continuum from cellular biography to organismal destiny.

Integrative Model: The Centriolar Theory of Cellular and Organismal Time

Synthesizing the evidence, we propose an integrative model that positions the centriole not merely as a component of the cellular timing apparatus, but as its central processing unit—a bio-physical interface where linear chronological time is transduced into non-linear biological fate. This "Centriolar Timeline" model describes how a centriole's life history dictates a hierarchical cascade of effects from the molecular to the organismal level.

The Centriolar Timeline: Encoding Quantity and Quality of Time

A newly born centriole enters a lifelong process of information accretion. Its timeline bifurcates along two parallel axes: the accumulation of "neutral" PTMs marking the quantity of time/divisions, and the accrual of "pathological" PTMs marking the quality of experience and exposure to stress.

- Axis 1: Neutral PTMs – The Replicative Ledger. Progressive, enzyme-driven modifications like polyglutamylation serve as a cumulative tally of cell cycles (Mahalingan et al., 2020). These marks are not inherently deleterious; they are signatures of functional maturity. A centriole with a specific polyglutamylation signature is structurally equipped for roles requiring stability, such as anchoring the primary cilium for effective Hedgehog signaling or establishing robust asymmetric attachment during stem cell division (Breslow & Holland, 2019).
- Axis 2: Pathological PTMs – The Stress Archive. Stochastic, damage-associated modifications—such as oxidation of cysteine residues in SAS-6, non-enzymatic glycation of long-lived core proteins, or the formation of amyloid-like aggregates—encode a history of metabolic and environmental insults (Wang et al., 2021). These lead directly to functional decline (wear), impairing microtubule nucleation capacity, disrupting ciliary assembly, and promoting errors in centrosome segregation.

The centriole's functional state at any moment is the vector sum of these two axes. This can be conceptually modeled as a state-space coordinate:

Functional State Vector (F) = (M, D)

where M represents a Maturity Index (driven by neutral PTMs) and D represents a Damage Index (driven by pathological PTMs).

Cellular Interpretation and Fate Decision

The cell constantly interprets this centriolar state vector through the multi-pathway reading mechanisms detailed earlier. A preponderance of maturity (high M, low D) supports programs of "Renewal": successful asymmetric division in stem cells, proper ciliary signaling guiding differentiation, and efficient intracellular transport. Conversely, a high damage load (high D),

regardless of M , pushes the system toward programs of "Aging": cell cycle arrest (senescence), apoptotic death, or dysfunctional differentiation (Marteil et al., 2018).

The transition between these fates is not linear but threshold-based. The system exhibits hysteresis; damage must be repaired below a certain level to re-enter the renewal pathway. This can be represented by a simple inequality governing fate choice:

```
If (D > D_critical) OR (M < M_threshold) → Engage Aging Program  
Else → Maintain/Sustain Renewal Program
```

Where $D_{critical}$ is the damage tolerance level and $M_{threshold}$ is the minimum maturity required for proper function.

Scaling to Tissue and Organismal Time

The collective fate of individual cells aggregates to define tissue and organismal age. In a young tissue, the majority of stem and progenitor cells operate with centrioles in the "Renewal" zone of the state-space, maintaining homeostasis. With aging, an increasing fraction of cells cross the threshold into the "Aging" zone due to accumulated centriolar damage.

This shifts the organismic balance from net tissue renewal toward net tissue degradation. The manifestations are organ-specific: sarcopenia from failing muscle satellite cells, immunosenescence from exhausted hematopoietic stem cells, and cognitive decline from dysfunctional neural progenitors—all potentially traceable, in part, to the declining functional state of the centriolar timekeeper in respective stem cell pools (Geiger et al., 2013). Organismal aging, therefore, can be reframed as the demographic shift in the distribution of cellular centriolar states across critical regenerative niches.

The Centriole as a Bio-Physical Interface and Therapeutic Target

This model establishes the centriole as a unique bio-physical interface where the abstract flow of time is materialized as molecular change on a stable structure, and that material record is physically inherited to influence future states. It transforms linear chronology into a non-linear biological output through a system of thresholds and integrated signals.

This perspective has profound translational implications. It suggests that aging and regeneration are not governed solely by genetic or epigenetic programs but by the physical integrity of key cellular machines. Therefore, strategies aimed at "rejuvenating" the centriolar timeline—by enhancing repair of pathological PTMs, boosting the clearance of damaged centriolar proteins, or stabilizing the structure against collapse—could fundamentally alter cellular and tissue aging trajectories. Centriole-centric therapies could range from pharmacological agents that modulate key modifying enzymes (e.g., tubulin deacetylases, antioxidant enzymes targeted to the centrosome) to gene therapies expressing chaperones that maintain centriolar proteostasis.

In conclusion, the Centriolar Timeline model provides a unified, mechanistic framework that links molecular events at a single organelle to the destiny of the entire organism. It posits that to

understand aging, we must look not only to the nucleus and its clocks but also to the intricate, resilient, and information-rich architecture of the centrosome. As the strategic timekeeper of the cell, the centriole emerges as a central player in the fundamental dialectic between life's continuity and its inevitable decline, offering a new frontier for interventions aimed at sustaining health across the lifespan.

References

Bayless, B. A., Galati, D. F., & Pearson, C. G. (2016). Tetrahymena basal bodies as a model for ciliary organelle identity and inheritance. *Cilia*, 5, 22. <https://doi.org/10.1186/s13630-016-0042-4>

Bazzi, H., & Anderson, K. V. (2014). Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. *Proceedings of the National Academy of Sciences*, 111(15), E1491–E1500. <https://doi.org/10.1073/pnas.1400568111>

Bornens, M. (2012). The centrosome in cells and organisms. *Science*, 335(6067), 422–426. <https://doi.org/10.1126/science.1209037>

Bré, M. H., Redeker, V., & Levilliers, N. (2021). Post-translational modifications of tubulin and microtubule stability in cilia and flagella. In *The Cytoskeleton: Diverse Roles in Structure and Mechanism* (pp. 47-70). Springer, Cham. https://doi.org/10.1007/978-3-030-75867-7_3

Breslow, D. K., & Holland, A. J. (2019). Mechanism and regulation of centriole and cilium biogenesis. *Annual Review of Biochemistry*, 88, 691–724. <https://doi.org/10.1146/annurev-biochem-013118-111153>

Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J. B., & Bettencourt-Dias, M. (2011). Evolution: Tracing the origins of centrioles, cilia, and flagella. *The Journal of Cell Biology*, 194(2), 165–175. <https://doi.org/10.1083/jcb.201011152>

Conroy, P. C., Saladino, C., Dantas, T. J., Lalor, P., Dockery, P., & Morrison, C. G. (2022). Centrosome adaptation to DNA damage by 53BP1 recruitment facilitates error-free mitosis. *Nature Communications*, 13(1), 620. <https://doi.org/10.1038/s41467-022-28227-6>

Conroy, P. C., Saladino, C., Dantas, T. J., Lalor, P., Dockery, P., & Morrison, C. G. (2022). Centrosome adaptation to DNA damage by 53BP1 recruitment facilitates error-free mitosis. *Nature Communications*, 13(1), 620. <https://doi.org/10.1038/s41467-022-28227-6>

Fishman, E. L., Jo, K., Nguyen, Q. P. H., Kong, D., Royfman, R., Cekic, A. R., ... & Avidor-Reiss, T. (2018). A novel atypical sperm centriole is functional during human fertilization. *Nature Communications*, 9(1), 2210. <https://doi.org/10.1038/s41467-018-04678-8>

Fong, C. S., Mazo, G., Das, T., Goodman, J., Kim, M., O'Rourke, B. P., Izquierdo, D., & Tsou, M.-F. B. (2016). 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. *eLife*, 5, e16270. <https://doi.org/10.7554/eLife.16270>

Gabriel, E., Ramani, A., Karow, U., Gottardo, M., Natarajan, K., Gooi, L. M., ... & Lancaster, M. A. (2021). Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. *Cell Stem Cell*, 28(1), 30-40.e8. <https://doi.org/10.1016/j.stem.2020.11.005>

Geiger, H., de Haan, G., & Florian, M. C. (2013). The ageing haematopoietic stem cell compartment. *Nature Reviews Immunology*, 13(5), 376-389. <https://doi.org/10.1038/nri3433>

Geiger, H., de Haan, G., & Florian, M. C. (2013). The ageing haematopoietic stem cell compartment. *Nature Reviews Immunology*, 13(5), 376–389. <https://doi.org/10.1038/nri3433>

Horvath, S. (2013). DNA methylation age of human tissues and cell types. *Genome Biology*, 14(10), R115. <https://doi.org/10.1186/gb-2013-14-10-r115>

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. *Issues and Developments in Medicine and Medical Research* Vol. 2, 22-31.

Jakobsen, L., Vanselow, K., Skogs, M., Toyoda, Y., Lundberg, E., Poser, I., Falkenby, L. G., Bennetzen, M., Westendorf, J., Nigg, E. A., Uhlen, M., Hyman, A. A., & Andersen, J. S. (2011). Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. *The EMBO Journal*, 30(8), 1520–1535. <https://doi.org/10.1038/emboj.2011.63>

Lomakin, A. J., Cattin, C. J., Cuvelier, D., Alraies, Z., Molina, M., Nader, G. P. F., Srivastava, N., Sáez, P. J., García-Arcos, J. M., Zhitnyak, I. Y., Bhargava, A., Driscoll, M. K., Welf, E. S., Fiolka, R., Petrie, R. J., De Silva, N. S., Gonzalez-Granado, J. M., Manel, N., Lennon-Duménil, A. M., ... Piel, M. (2015). The nucleus acts as a ruler tailoring cell responses to spatial constraints. *Science*, 348(6232), 560–563. <https://doi.org/10.1126/science.aaa2029>

Lynch, M., Field, M. C., & Goodson, H. V. (2021). Evolution of the cytoskeleton and motility systems. *Cold Spring Harbor Perspectives in Biology*, 13(12), a038323. <https://doi.org/10.1101/cshperspect.a038323>

Mahalingan, K. K., Keenan, E. K., Strickland, M., Li, Y., Liu, Y., Ball, H. L., Tanner, M. E., Tjandra, N., & Roll-Mecak, A. (2020). Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes. *Nature Structural & Molecular Biology*, 27(9), 802–813. <https://doi.org/10.1038/s41594-020-0460-2>

Mahalingan, K. K., Keenan, E. K., Strickland, M., Li, Y., Liu, Y., Ball, H. L., Tanner, M. E., Tjandra, N., & Roll-Mecak, A. (2020). Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes. *Nature Structural & Molecular Biology*, 27(9), 802–813. <https://doi.org/10.1038/s41594-020-0460-2>

Marteil, G., Guerrero, A., Vieira, A. F., de Almeida, B. P., Machado, P., Mendonça, S., ... & Bettencourt-Dias, M. (2018). Over-elongation of centrioles in cancer promotes centriole amplification and mitotic defects. *The EMBO Journal*, 37(22), e100303. <https://doi.org/10.15252/embj.2018100303>

Marteil, G., Guerrero, A., Vieira, A. F., de Almeida, B. P., Machado, P., Mendonça, S., ... & Bettencourt-Dias, M. (2018). Over-elongation of centrioles in cancer promotes centriole amplification and mitotic defects. *The EMBO Journal*, 37(22), e100303. <https://doi.org/10.15252/embj.2018100303>

Marteil, G., Guerrero, A., Vieira, A. F., de Almeida, B. P., Machado, P., Mendonça, S., Mesquita, M., Villarreal, B., Fonseca, I., Francia, M. E., Dores, K., Martins, N. P., Jana, S. C., Tranfield, E. M., Barbosa-Morais, N. L., Paredes, J., Pellman, D., & Bettencourt-Dias, M. (2018). Over-elongation of centrioles in cancer promotes centriole amplification and mitotic defects. *The EMBO Journal*, 37(22), e100303. <https://doi.org/10.15252/embj.2018100303>

Marteil, G., Guerrero, A., Vieira, A. F., de Almeida, B. P., Machado, P., Mendonça, S., Mesquita, M., Villarreal, B., Fonseca, I., Francia, M. E., Dores, K., Martins, N. P., Jana, S. C., Tranfield, E. M., Barbosa-Morais, N. L., Paredes, J., Pellman, D., & Bettencourt-Dias, M. (2018). Over-elongation of centrioles in cancer promotes centriole amplification and mitotic defects. *The EMBO Journal*, 37(22), e100303. <https://doi.org/10.15252/embj.2018100303>

Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. *Nature Reviews Molecular Cell Biology*, 19(5), 297–312. <https://doi.org/10.1038/nrm.2018.14>

Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. *Nature Reviews Molecular Cell Biology*, 19(5), 297–312. <https://doi.org/10.1038/nrm.2018.14>

Nigg, E. A., & Holland, A. J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. *Nature Reviews Molecular Cell Biology*, 19(5), 297–312. <https://doi.org/10.1038/nrm.2018.14>

Prosser, S. L., & Pelletier, L. (2017). Centriole assembly: A puzzle for the cell cycle. *The Journal of Cell Biology*, 216(12), 3847–3848. <https://doi.org/10.1083/jcb.201709103>

Rogowski, K., Juge, F., van Dijk, J., Wloga, D., Strub, J. M., Levilliers, N., Thomas, D., Bré, M. H., Van Dorsselaer, A., Gaertig, J., & Janke, C. (2009). A family of protein-deglutamylating enzymes associated with neurodegeneration. *Cell*, 138(2), 366–376. <https://doi.org/10.1016/j.cell.2009.04.061>

Sha, Y. W., Wang, X., Su, Z. Y., Li, L., Ding, L., Ji, Z. Y., ... & Mei, L. B. (2019). Centriole duplication and maturation in animal cells. In *The Centrosome: Cell and Molecular Mechanisms of Functions and Dysfunctions in Disease* (pp. 55-78). Springer, Cham. https://doi.org/10.1007/978-3-030-23173-6_4

Tkemaladze, J. (2024). Editorial: Molecular mechanism of ageing and therapeutic advances through targeting glycation and oxidative stress. *Front Pharmacol*. 2024 Mar 6;14:1324446. DOI : 10.3389/fphar.2023.1324446. PMID: 38510429; PMCID: PMC10953819.

Tkemaladze, J. (2026). Old Centrioles Make Old Bodies. *Annals of Rejuvenation Science*, 1(1). DOI : <https://doi.org/10.65649/yx9sn772>

Tkemaladze, J. (2026). Visions of the Future. *Longevity Horizon*, 2(1). DOI : <https://doi.org/10.65649/8be27s21>

Tkemaladze, J. (2026). Ze System Manifesto. *Longevity Horizon*, 2(1). DOI : <https://doi.org/10.65649/3hm9b025>

Venkei, Z. G., & Yamashita, Y. M. (2018). Emerging mechanisms of asymmetric stem cell division. *The Journal of Cell Biology*, 217(11), 3785-3795. <https://doi.org/10.1083/jcb.201807037>

Venkei, Z. G., & Yamashita, Y. M. (2018). Emerging mechanisms of asymmetric stem cell division. *The Journal of Cell Biology*, 217(11), 3785-3795. <https://doi.org/10.1083/jcb.201807037>

Wang, W. J., Acehan, D., Kao, C. H., Jane, W. N., Uryu, K., & Tsou, M. F. B. (2021). The deubiquitinase USP33 regulates centrosome biogenesis via the SAS-6 protein. *Journal of Cell Science*, 134(2), jcs247155. <https://doi.org/10.1242/jcs.247155>

Wang, W. J., Acehan, D., Kao, C. H., Jane, W. N., Uryu, K., & Tsou, M. F. B. (2021). The deubiquitinase USP33 regulates centrosome biogenesis via the SAS-6 protein. *Journal of Cell Science*, 134(2), jcs247155. <https://doi.org/10.1242/jcs.247155>

Wils, L., Rombauts, F., & van der Horst, G. T. J. (2021). The circadian clock and centrioles: Insights into the regulation of cell division. *Seminars in Cell & Developmental Biology*, 126, 78-84. <https://doi.org/10.1016/j.semcdb.2021.04.023>

Xu, Z., Schaedel, L., Portran, D., Aguilar, A., Gaillard, J., Marinkovich, M. P., Théry, M., & Nachury, M. V. (2017). Microtubules acquire resistance from mechanical breakage through intraluminal acetylation. *Science*, 356(6335), 328–332. <https://doi.org/10.1126/science.aa18764>

Xu, Z., Schaedel, L., Portran, D., Aguilar, A., Gaillard, J., Marinkovich, M. P., Théry, M., & Nachury, M. V. (2017). Microtubules acquire resistance from mechanical breakage through intraluminal acetylation. *Science*, 356(6335), 328–332. <https://doi.org/10.1126/science.aa18764>