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Abstract 
This article introduces and formalizes Ze, a novel theoretical framework for cognitive 
architecture and autonomous systems. Ze posits that advanced intelligence requires the 
maintenance of two distinct, asymmetric generative models of the same environment: a causal 
(forward) model 𝓜_A and a counterfactual (inverse) model 𝓜_B. Each model minimizes its own 
variational free energy (𝓕_A), (𝓕_B), and their interaction dynamics define core cognitive 
processes. A key emergent quantity is the model conflict Δ𝓕 = |𝓕_A − 𝓕_B|, which regulates a 
phase transition between two fundamental regimes: an interference regime (characterized by 
low posterior divergence (𝓘 ≈ 0) where model outputs are constructively fused, and a 
localization regime (Δ𝓕 > θ) where the system commits to a single resolved interpretation ŝ. The 
framework is extended to include active action selection from model-specific policies, a 
mechanism for representational growth via "which-path" information, and a "quantum eraser" 
operator for strategic simplification. We demonstrate that this architecture establishes a strict 
formal isomorphism with quantum measurement phenomena, notably the double-slit 
experiment, but is grounded entirely in classical variational inference. The theory reinterprets 
cognitive "collapse" not as a postulate but as an optimization-driven phase transition and yields 
the key testable prediction that active, alternating intervention accelerates localization compared 
to passive observation. 
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Variables and Basic Structure 
This section introduces the core mathematical framework of Ze, a proposed architecture for 
autonomous systems that necessitates the parallel maintenance of two distinct yet 
complementary world models. The central premise is that intelligent, adaptive behavior in 
partially observable environments requires more than a single generative model of sensory 
inputs. We posit that a dual-model architecture, comprising a causal (forward) model and a 
counterfactual (inverse) model, provides a more robust substrate for state estimation, planning, 
and explanation generation. 
 
Consider an agent embedded in an environment, receiving a stream of potentially ambiguous, 
high-dimensional sensory data over time. This stream is denoted as the observation sequence 
o_{1:T} = (o_1, o_2, ..., o_T), where each o_t belongs to an observation space 𝓞. The agent's 
fundamental challenge is to infer the latent, causal structure of the environment from this 
sensory flow to guide its actions (Hassabis et al., 2017; Lake et al., 2017). 
 
Within Ze, this challenge is addressed by instantiating two separate generative models of the 
same underlying environment. These models share the goal of explaining the observations but 
adopt fundamentally different temporal and causal perspectives. 
 

●​ The Causal (Forward) Model 𝓜_A: This model embodies the standard perspective of 
temporal generative models in cognitive science and machine learning (Friston, 2010; 
Rao & Ballard, 1999). It formalizes the understanding of "how the world evolves." Its 
dynamics are governed by a causal, forward-in-time progression. Conceptually, 𝓜_A 
answers the question: "Given the current state of the world and my action, what are the 
probable next states and subsequent observations?" This mirrors the predictive 
processing and active inference frameworks, where an internal model generates 
top-down predictions to be matched against bottom-up sensory evidence (Clark, 2013; 
Friston, 2005). 

●​ The Counterfactual (Inverse) Model 𝓜_B: This model represents the novel, 
complementary component of the Ze architecture. It operates with a counterfactual or 
retrospective logic. Its dynamics are not strictly bound to forward causality but are 
structured to infer "what must have been" to explain the present. It answers a different 
question: "Given the current sensory state, what past states or alternative causal 
trajectories could have plausibly led to it?" This mirrors reasoning processes involved in 
explanation, fault diagnosis, and understanding alternative possibilities (Gerstenberg et 
al., 2021; Pearl, 2009). The "inverse" label here refers not merely to inverting a function, 
but to inverting the direction of causal inquiry. 

 
Each generative model 𝓜_X (where X ∈ {A, B}) maintains its own set of latent, or hidden, 
states. These states represent the model's internal belief about the environment's configuration 
from its specific perspective. We denote these as: 
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s^A_t ∈ 𝓢^A,   s^B_t ∈ 𝓢^B 

 
where 𝓢^A and 𝓢^B are the respective state spaces. Crucially, s^A_t and s^B_t are not required 
to be isomorphic or even of the same dimensionality. s^A_t might encode features relevant to 
predicting the next observation (e.g., object positions and velocities), while s^B_t might encode 
features relevant to inferring teleological or abstract causal dependencies (e.g., goals, 
intentions, or critical events). 
 
Since the true environmental states are hidden, the agent must maintain probabilistic beliefs 
about them. In accordance with Bayesian brain theories and variational inference approaches 
(Knill & Pouget, 2004; Dayan et al., 1995), each model in Ze maintains its own approximate 
posterior distribution over its hidden states at each time step. These posteriors represent the 
agent's belief about the latent state given all observations up to the current time. They are 
formally defined as: 
 

q_A(s^A_t) ≈ P(s^A_t | o_{1:t}),   q_B(s^B_t) ≈ P(s^B_t | o_{1:t}) 
 

The approximation sign acknowledges that these posteriors are typically intractable to compute 
exactly and are instead approximated, for instance, by parameterized distributions (e.g., 
Gaussians) whose parameters are output by a neural network (Kingma & Welling, 2013; 
Rezende et al., 2014). The process of updating these beliefs recursively as new data o_t arrives 
constitutes perceptual inference within each model. 
 
The separation of posteriors—q_A and q_B—is a critical feature. It allows the two models to 
develop and maintain potentially divergent interpretations of the same sensory history. A conflict 
or tension between q_A and q_B, quantified by measures such as their divergence or the 
disagreement in their predictions, can be a key signal for triggering attention, exploration, or 
model update processes, as explored in subsequent sections of this article. 
 
In summary, the foundational structure of Ze is a duplex of generative models: the forward 
model 𝓜_A, with states s^A_t and posterior q_A, which performs causal prediction; and the 
inverse model 𝓜_B, with states s^B_t and posterior q_B, which performs counterfactual 
explanation. Their co-evolution and interaction in explaining the stream o_{1:T} `` form the basis 
for the cognitive dynamics proposed by the Ze framework. The following sections will detail the 
specific parameterization, update rules, and interaction mechanisms between 𝓜_A and 𝓜_B. 

Two Variational Free Energies 
The core perceptual and learning dynamics within the Ze architecture are governed by the 
principle of variational free energy minimization, a framework widely adopted in neuroscience 
and machine learning to formalize inference and learning under uncertainty (Friston, 2010; 
Buckley et al., 2017). However, Ze’s duality is instantiated through the maintenance of two 
distinct variational free energy functionals, each tied to its respective generative model. 
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For the causal (forward) model 𝓜_A, we define its variational free energy as: 
 

𝓕_A(o, q_A) = E_{q_A(s^A)} [ ln q_A(s^A) - ln p(o, s^A | 𝓜_A) ] 
 

Analogously, for the counterfactual (inverse) model 𝓜_B, we define: 
 

𝓕_B(o, q_B) = E_{q_B(s^B)} [ ln q_B(s^B) - ln p(o, s^B | 𝓜_B) ] 
 

These expressions follow the standard formulation of variational inference (Jordan et al., 1999; 
Blei et al., 2017). Here, p(o, s^X | 𝓜_X) represents the joint generative model under 𝓜_X, 
describing how the model assumes observations and its latent states co-occur. The term 
q_X(s^X) is the approximate posterior, as introduced in Section 1. Critically, the expectation 
E_{q_X} is taken with respect to the model’s own posterior distribution. Mathematically, each 
free energy 𝓕_X provides an upper bound on the negative log evidence (or surprise) - ln p(o | 
𝓜_X) for its respective model (Beal, 2003; MacKay, 2003). Minimizing 𝓕_A with respect to the 
parameters of q_A corresponds to performing approximate Bayesian inference to identify the 
most plausible hidden states s^A that explain the observations o under the forward causal 
assumptions of 𝓜_A. Simultaneously, minimizing 𝓕_B tunes q_B to perform inference under the 
counterfactual assumptions of 𝓜_B. 
 
It is crucial to emphasize that these two variational free energies are not required to be 
symmetric in time, structure, or complexity. This asymmetry is a foundational design principle of 
Ze and a key point of departure from architectures employing twin or duplicated models. The 
generative models p(o, s^A | 𝓜_A) and p(o, s^B | 𝓜_B) can be factorized according to vastly 
different graphical structures and temporal dependencies. 
 
The forward model 𝓜_A typically assumes a canonical, temporally causal factorization aligned 
with the arrow of time (Friston et al., 2017). For example: 
 
p(o_{1:T}, s^A_{1:T} | 𝓜_A) = p(s^A_1)  Π_{t=2}^{T} p(s^A_t | s^A_{t-1})  Π_{t=1}^{T} p(o_t | 
s^A_t), 
 
where p(s^A_t | s^A_{t-1}) is a state transition prior and p(o_t | s^A_t) is a likelihood mapping. 
Minimizing 𝓕_A thus encourages the posterior q_A to recognize states that make the observed 
sequence likely under this forward chain of causality. This is formally related to state estimation 
in partially observable Markov decision processes (POMDPs) and sequential variational 
autoencoders (Chung et al., 2015; Krishnan et al., 2017). 
 
In contrast, the factorization for the inverse model 𝓜_B is not constrained to forward temporal 
causality. It may, for instance, incorporate backward dependencies or non-Markovian 
relationships that emphasize explaining the present by the past or by latent causes (Parr & 
Friston, 2018). One potential factorization could be: 
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p(o_{1:T}, s^B_{1:T} | 𝓜_B) = p(s^B_T)  Π_{t=1}^{T-1} p(s^B_t | s^B_{t+1}, o_{t:T})  Π_{t=1}^{T} 
p(o_t | s^B_t) 
 
where the state transition is conditioned on future states or observational contexts, embodying a 
form of retrospective or teleological smoothing. Alternatively, 𝓜_B could be structured as a 
hierarchical model where high-level latent variables z^B generate trajectories of lower-level 
states s^B, emphasizing abstract causes over detailed dynamics (Sohn et al., 2015). Crucially, 
𝓕_B is minimized under this set of structural assumptions, which may posit that the present is 
best explained by goals, final causes, or counterfactual alternatives, as explored in models of 
planning and intention inference (Baker et al., 2017; Botvinick & Toussaint, 2012). 
 
This structural asymmetry implies that the two free energies measure "surprise" or prediction 
error relative to fundamentally different generative world models. 𝓕_A quantifies how surprising 
the data is under a model of physical, forward dynamics. 𝓕_B quantifies how surprising the 
same data is under a model of narrative, teleological, or explanatory coherence. Their 
minimization leads to the emergence of two distinct, co-existing interpretations of the sensory 
stream. 
 
Furthermore, the timescales of minimization can differ. 𝓕_A is often minimized rapidly for online, 
real-time filtering (e.g., updating a belief about an object’s current position). The minimization of 
𝓕_B may operate on a slower timescale, integrating evidence over longer episodes to infer 
stable goals or contextual narratives (Hasson et al., 2015). The models may also differ in 
representational granularity; 𝓜_A might operate on fine-grained sensorimotor variables, while 
𝓜_B might operate on more symbolic or abstract variables (Lake et al., 2017). 
 
In summary, the Ze architecture is defined not by a single optimization objective, but by the 
parallel minimization of two asymmetric variational free energies, 𝓕_A and 𝓕_B. This process 
maintains two separate, probabilistically coherent interpretations of experience: one 
causal-forward and one counterfactual-inverse. Their interaction, competition, and 
integration—mediated by a third, overarching principle—form the basis for advanced cognitive 
functions and will be addressed in the following section on the Meta-Energy G and the Principle 
of Collaborative Dissonance. 

The Model Conflict (The Core Quantity of Ze) 
The parallel maintenance and independent minimization of two distinct variational free energies, 
𝓕_A and 𝓕_B, give rise to a crucial, emergent dynamical variable within the Ze architecture: the 
model conflict or interpretation divergence. This quantity, central to Ze's proposed cognitive 
dynamics, is defined as the absolute difference between the two free energies: 
 

Δ𝓕 = | 𝓕_A(o, q_A) - 𝓕_B(o, q_B) | 
 
Formally, Δ𝓕 quantifies the disparity between the perceptual "surprise" experienced by the 
causal model 𝓜_A and that experienced by the counterfactual model 𝓜_B when confronted 
with the same sensory data o. It is not a directly observable sensory signal but a structural or 
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meta-cognitive variable that emerges from the internal processing architecture (Fleming & Daw, 
2017; Shea et al., 2014). Its magnitude dictates the system's mode of operation, governing the 
nature of interaction between the two generative streams. 
 
The central postulate of Ze is that Δ𝓕 regulates a continuum between two fundamental cognitive 
regimes: Interference and Localization. 
 

●​ Low Δ𝓕: The Regime of Permissible Interference. When the two free energies are of 
comparable magnitude (Δ𝓕 is small), it indicates a state of consensus or alignment 
between the two models' interpretations. Both the forward causal narrative and the 
inverse counterfactual explanation converge on a similarly plausible account of the 
sensory data. In this regime, the system permits and even encourages interference—not 
in the disruptive sense, but in the constructive sense of wave interference in physics. 
Here, the posterior distributions q_A and q_B, or their predictions, can be blended, 
averaged, or allowed to interact synergistically (Buschman & Miller, 2007; Heeger, 2017). 
This interaction can lead to enriched, multi-faceted representations. For instance, the 
forward model's estimate of physical object location can be refined by the inverse 
model's inference about the object's goal, and vice-versa, leading to a robust, integrated 
percept. This regime is characteristic of routine perception in predictable, coherent 
environments where sensory evidence strongly supports a single, unified interpretation. 
It aligns with theories of "explanation-based" perception where prior knowledge 
seamlessly informs sensory processing (Kersten et al., 2004). 

●​ High Δ𝓕: The Regime of Required Localization. A large value of Δ𝓕 signals a 
fundamental dissonance between the two models. One model finds the sensory data 
relatively unsurprising and coherent (low free energy), while the other finds it highly 
surprising and incoherent (high free energy). This indicates an ambiguous, novel, or 
contradictory situation—such as an unexpected event, a perceptual illusion, or a 
violation of normative assumptions (Lieder et al., 2018). In this regime, the architecture 
triggers a localization process. The term is used here in its computational sense, akin to 
fault localization in systems engineering: the system must identify which model (or which 
component within a model) is the source of the conflict and where in the data stream the 
discrepancy arises (Liang et al., 2018; Sajid et al., 2021). 

 
Localization involves several key operations: 
 

1.​ Source Attribution: Determining whether the conflict stems from a failure in the forward 
causal prediction (𝓕_A) is high) or from the failure to find a plausible counterfactual 
explanation (𝓕_B is high). Is the world violating physical laws, or is it violating 
narrative/teleological expectations? 

2.​ Temporal Isolation: Identifying the specific time steps or episodes where the predictions 
of 𝓜_A and 𝓜_B begin to diverge significantly. This is analogous to identifying a 
"change point" or an "anomaly" from a multi-model perspective (Wilson et al., 2010). 

3.​ Focused Attention and Exploration: Allocating processing resources (e.g., precision 
weighting in predictive coding) to the conflicting aspects of the sensory input or to the 
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model components in error (Feldman & Friston, 2010; Mirza et al., 2016). This may also 
drive targeted epistemic exploration to gather disambiguating data. 

 
The outcome of localization is not necessarily to force the models back into agreement. Instead, 
it can lead to several adaptive responses: rapid online updating of the more uncertain model's 
parameters, the gating of one model's output in favor of the other for downstream 
decision-making (a form of model selection), or the initiation of deliberate reasoning to resolve 
the paradox (Findling et al., 2023). Crucially, a persistently high Δ𝓕 can signal a genuine, 
irreducible ambiguity in the environment, prompting the system to maintain multiple competing 
interpretations—a state related to holding "hypotheses" in mind (Vul et al., 2014). 
 
It is vital to reiterate that Δ𝓕 is a structural, internally computed variable, not an external 
observable. It is a second-order measure that reports on the consistency of the system's own 
first-order inferences. This places it within the theoretical realm of meta-cognition and 
confidence computation (Meyniel et al., 2015; Pouget et al., 2016). Unlike a simple prediction 
error signal within a single model, Δ𝓕 is a conflict signal between two different kinds of 
prediction errors. 
 
In conclusion, the model conflict Δ𝓕 serves as the core control variable of the Ze architecture. 
By monitoring the divergence between the variational free energies of its dual generative 
models, the system can fluidly alternate between a cooperative mode of representational 
enrichment (low conflict) and a diagnostic mode of focused analysis and model revision (high 
conflict). This dynamic provides a formal mechanism for balancing perceptual fusion and fission, 
stability and plasticity, and exploration and exploitation. The subsequent section will formalize 
how this conflict is managed through a higher-order Meta-Energy G. 

Interference as Posterior Compatibility 
The model conflict Δ𝓕, as defined in the previous section, governs the global regime of the Ze 
architecture, switching between interference and localization. To formalize the specific 
mechanics of the interference regime, we must define a precise, local measure of compatibility 
between the two generative models. This measure quantifies the degree to which their internal, 
probabilistic interpretations of the world can be meaningfully combined. We propose that 
interference, in the Ze framework, is fundamentally about the compatibility of approximate 
posterior distributions. 
 
Let us consider the posterior beliefs q_A(s^A) and q_B(s^B). For interference—the constructive 
blending of interpretations—to be permissible, these beliefs must refer to, or can be mapped 
onto, a common latent description. While s^A and s^B may inhabit different state spaces 𝓢^A 
and 𝓢^B, we assume the existence of a projection or a common representational subspace. For 
analytical clarity, we initially consider a scenario where such a mapping allows us to compare 
distributions over a shared variable s. In practice, this could correspond to a low-dimensional 
manifold of task-relevant variables (e.g., object identity, spatial location, or goal state) onto 
which both models project their beliefs (Gallego et al., 2020). 
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We define the Interference Measure 𝓘 as the Jensen-Shannon divergence (JSD) between the 
two posteriors over this common grounding: 
 

𝓘 = D_JS( q_A(s) || q_B(s) ) 
 
The Jensen-Shannon divergence is a symmetrized and smoothed version of the 
Kullback-Leibler (KL) divergence, defined as: 
 

D_JS(P || Q) = 1/2  D_KL(P || M) + 1/2  D_KL(Q || M) 
 
where M = 1/2  (P + Q) is the mixture distribution (Lin, 1991; Endres & Schindelin, 2003). JSD is 
bounded between 0 and 1 (for base-2 logarithm) and provides a symmetric, finite metric of 
distributional similarity. 
 
The value of 𝓘 directly dictates the feasibility of interference: 

●​ 𝓘 ≈ 0: Interference is possible and encouraged. A near-zero JSD indicates that the 
two posterior distributions are nearly identical. The causal model 𝓜_A and the 
counterfactual model 𝓜_B have arrived at statistically indistinguishable beliefs about the 
state of the world. In this regime of high compatibility, the outputs of the two models can 
be seamlessly integrated. This could occur through a weighted averaging of their 
predictions for downstream processing, a mutual reinforcement of their hidden state 
estimates, or the formation of a unified posterior that is more precise and confident than 
either alone—a phenomenon analogous to "veto" or "blessing" in Bayesian sensor fusion 
(Ernst & Banks, 2002; Clark & Yuille, 1990). This state represents cognitive coherence, 
where sensory evidence, forward prediction, and retrospective explanation converge. 

●​ 𝓘 ≫ 0: Interference is suppressed. A large JSD signifies a significant divergence 
between the posteriors. The two models are promoting fundamentally different, 
statistically incompatible interpretations of the same sensory data. In this case, simply 
averaging their outputs would lead to a nonsensical, maximally uncertain mixture that 
explains nothing (the mixture distribution Mitself would have high entropy). Therefore, 
the architecture must suppress direct interference to prevent representational corruption. 
Instead, as dictated by a high Δ𝓕, the system enters the localization regime to diagnose 
the source of this posterior divergence. 

 
It is critical to disambiguate the term "interference" as used in Ze from its common usage in 
wave physics. Here, interference is not a wave phenomenon but a computational principle of 
tolerated multiple explanations. It is the system's ability to maintain and exploit a portfolio of 
viable generative models whose beliefs are sufficiently aligned that their combined use is 
beneficial (Angela & Dayan, 2005). This aligns with theories of "probabilistic population codes" 
and "distributional coding," where neural populations represent uncertainty distributions, and 
optimal decoding can combine information from multiple sources (Ma et al., 2006; Pouget et al., 
2003). 
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The dynamics of 𝓘 are therefore central to learning and adaptation. During familiar, predictable 
tasks, 𝓘 is kept low through the coupled minimization of 𝓕_A and 𝓕_B, leading to stable, fused 
perceptions. When novel or contradictory data is encountered, the inference process may cause 
q_A and q_B to diverge rapidly, spiking 𝓘. This spike acts as a local signal that (a) inhibits fusion 
pathways and (b) contributes to the global conflict signal Δ𝓕. The subsequent localization 
process can then be viewed as an active search for new model parameters or state estimates 
that will reduce 𝓘, thereby restoring the conditions for productive interference under a new, 
coherent understanding (Solway & Botvinick, 2012). 
 
In summary, the Jensen-Shannon divergence 𝓘 between the posteriors of the dual models 
operationalizes the core Ze concept of interference. It moves the theory from a global 
regime-switching principle (Δ𝓕) to a local, computable mechanism governing information fusion. 
Interference is permitted only under conditions of posterior compatibility ((𝓘 ≈ 0), which signifies 
a coherent world-model. When posteriors diverge (𝓘 ≫ 0), fusion is suppressed in favor of 
diagnostic localization. This formulation provides a rigorous, information-theoretic foundation for 
understanding how a cognitive system can fluidly alternate between exploiting a unified 
world-view and investigating its very foundations. 

Localization as a Phase Transition 
The previous sections established the dual-model architecture of Ze and defined the key 
quantities governing its dynamics: the global model conflict Δ𝓕 and the local interference 
measure 𝓘. We now formalize the critical transition into the localization regime, which we 
propose is not a gradual adjustment but a swift, re-organizational shift akin to a phase transition 
in dynamical systems (Haken, 1983; Tognoli & Kelso, 2014). This transition is triggered when 
the dissonance between the models exceeds a system's tolerance for ambiguity, compelling a 
focused diagnostic process. 
 
The transition into localization is governed by a localization threshold θ. This threshold 
represents a meta-parameter of the Ze architecture, which may be fixed or adaptively tuned 
based on context, akin to a decision boundary or an uncertainty tolerance (De Berker et al., 
2016). The triggering condition is: 
 

If Δ𝓕 > θ  ⇒  Localization is triggered. 
 
When Δ𝓕 ≤ θ, the system operates in the interference regime, permitting the blending of 
posteriors as described in Section 4. However, once the conflict exceeds θ, the architecture 
undergoes a qualitative change. The cooperative, integrative dynamics are suppressed, and the 
system enters a state of focused competition and hypothesis testing. This abrupt shift is 
reminiscent of perceptual transitions in bistable perception or cognitive "aha!" moments, where a 
new interpretation suddenly dominates (Sandkühler & Bhattacharya, 2008; Kondo et al., 2022). 
 
Formally, we define the core operation of the localization process as a probabilistic projection. 
The system's current, conflicting posteriors q_A(s^A) and q_B(s^B) are used to generate a new, 
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constrained posterior belief over a shared or reconciled latent space. This operation is denoted 
as: 
 

q(s) → q(s | ŝ) 
 
where q(s) represents the prior or default distribution in the shared space (often a mixture or a 
broad distribution), and q(s | ŝ) is a posterior sharply conditioned on a specific, resolved state ŝ. 
The key is the determination of ŝ. 
 
We posit that ŝ is the latent state that represents the most plausible common ground or "best 
compromise" between the two conflicting models, given their respective evaluations of the 
situation. It is identified as the state that minimizes a weighted sum of the two models' free 
energy functionals, evaluated pointwise or locally. Specifically: 
 

ŝ = argmin_{s ∈ 𝓢} [ α 𝓕_A(s) + (1 - α) 𝓕_B(s) ] 
 

Here, 𝓕_X(s) is a simplified, state-specific "surprise" or cost associated with state s under 
model 𝓜_X. It can be conceptualized as the negative log joint probability - ln p(o, s | 𝓜_X) 
 or a variational free energy where the distribution is a Dirac delta centered on s. The weighting 
parameter α ∈ [0, 1] is crucial. It is not fixed but is dynamically determined by the relative 
confidence or precision of each model at the onset of the conflict, often related to the inverse of 
their respective free energies or estimated uncertainties (Friston et al., 2012). For instance, if 
𝓕_A ≪ 𝓕_B, the forward model is much more confident, and α will be close to 1, allowing 𝓜_A 
to dominate the resolution. Conversely, if the conflict arises from a shocking violation of 
narrative expectations, 𝓜_B's surprise may drive α toward 0. 
 
The minimization to find ŝ represents an active inference or search process. It is not merely an 
analytical computation but a constructive cognitive act—a "deliberation" phase where the 
system tests hypothetical state configurations to find one that best reconciles the two sources of 
evidence (Botvinick & Toussaint, 2012). This process can involve mental simulation, 
counterfactual reasoning, or focused attention to specific sensory features to gather new 
evidence (Pezzulo et al., 2013). 
 
Once ŝ is identified, the system conditions its ongoing perception on this resolved state. The 
projection q(s) → q(s | ŝ) effectively collapses the diffuse, conflicting uncertainty into a 
sharpened, provisional belief. This new belief then serves as a prior or an attentional filter for 
subsequent processing. It guides active sampling of the environment to confirm or refute the 
new hypothesis (Schwartenbeck et al., 2013), and it provides a stable anchor point from which 
to update the internal parameters of one or both of the generative models 𝓜_A and 𝓜_B. This 
parameter update aims to reduce the free energy of the now-dominant model for state ŝ, 
thereby aligning the models' predictions for the future and reducing Δ𝓕 below the threshold θ. 
 
In summary, the localization phase in Ze is modeled as a first-order phase transition triggered by 
exceeding a conflict threshold θ. Its computational essence is a projection onto a resolved latent 
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state ŝ that minimizes a confidence-weighted sum of the models' free energies. This process 
formalizes the shift from a state of interpretative ambiguity and parallel processing to one of 
focused hypothesis testing and model revision. It provides a mathematical description for 
cognitive events such as error detection, surprise-driven learning, and insight, where the system 
actively restructures its understanding to resolve internal contradiction (FitzGibbon et al., 2020). 
The final section will integrate these dynamics into a unified principle of meta-energy 
minimization. 

Active Actions (Ze ≠ Passive Bayes) 
Thus far, the Ze framework has been presented as a perceptual and inferential architecture, 
maintaining dual world models and managing the conflict between them. However, a cognitive 
system that merely observes and interprets the world is incomplete. True intelligence requires 
the capacity for goal-directed action to navigate, manipulate, and learn from the environment 
(Pfeifer & Bongard, 2006; Lake et al., 2017). Critically, Ze is not a passive Bayesian observer; it 
is an active inference and control system where actions are generated to resolve internal 
uncertainty and dissonance across its generative models. This transforms Ze from a model of 
perception into a model of embodied, adaptive agency. 
 
In Ze, actions are not generated by a single, monolithic controller. Instead, the duality of the 
architecture extends to the motor domain. At any given time step t, an action a_t is sampled 
from a policy π associated with one of the two generative models. Formally: 
 

a_t ~ π_A(a_t | s^A_t, Ω_t)  or  a_t ~ π_B(a_t | s^B_t, Ω_t) 
 
Here, π_A and π_B represent action policies derived from the forward (𝓜_A) and inverse 
(𝓜_B) models, respectively. Each policy maps from its model's current latent state belief s^A_t 
or s^B_t and a current objective Ω_t to a distribution over possible actions. Crucially, Ω_t is not a 
fixed external reward signal but an internally generated target distribution over future states or 
observations, often conceptualized as a prior preference in active inference (Friston et al., 
2017). The nature of this target can differ: 𝓜_A's policy π_A might aim to minimize expected 
future prediction error (expected free energy) under its forward dynamics, leading to 
information-seeking (epistemic) or uncertainty-reducing (pragmatic) actions (Kaplan & Friston, 
2018). In contrast, 𝓜_B's policy π_B might aim to realize a specific counterfactual future or 
narrative arc inferred by the inverse model, leading to goal-directed or "explanation-driven" 
actions (Botvinick & Toussaint, 2012). 
 
The fundamental question is: How does Ze decide which model's policy to enact? This 
arbitration is not arbitrary but is governed by a meta-control principle that seeks to resolve the 
system's overall cognitive tension. We propose that the system selects the policy that is 
expected to most effectively reduce the combined variational free energy of both models in the 
future. Formally, the chosen policy π at time t is: 
 

π = argmin_{π ∈ {π_A, π_B}} E_{q(s^A, s^B, o_τ | π)} [ 𝓕_A(o_τ, q_A) + 𝓕_B(o_τ, q_B) ] 
 

© Under CC BY-NC-ND 4.0 International License | Longevity Horizon, 2(2)​ ​ ​ ​ 11 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://longevity.ge/index.php/longhoriz


 

where the expectation is taken over predicted future states s^A, s^B and observations o_τ (τ > t) 
under the candidate policy π. This rule encapsulates a drive for global coherence. The system 
evaluates which course of action—guided by the causal or the counterfactual perspective—is 
anticipated to yield future sensory data that both models can explain with minimal surprise (i.e., 
low free energy for both). 
 
This arbitration mechanism has profound implications. When the models are coherent (Δ𝓕 is 
low), their predictions and preferred actions will often align, making the choice trivial. However, 
in a state of high conflict (Δ𝓕 > θ), the policies π_A and π_B may prescribe radically different 
actions. For instance, confronted with an ambiguous perceptual stimulus, π_A (forward model) 
might prescribe an orienting action to gather more sensory data (e.g., moving closer), while π_B 
(inverse model) might prescribe a testing action based on a hypothesized narrative (e.g., 
pressing a button to see if it confirms a guessed rule) (Gottlieb & Oudeyer, 2018). The 
meta-control rule selects the action expected to resolve the conflict most efficiently, effectively 
using action as a tool for active learning and disambiguation. 
 
This makes Ze an inherently active system. It does not wait passively for evidence to resolve its 
internal conflicts; it intervenes in the world to generate informative outcomes (Pearl, 2009; 
Linson & Friston, 2019). An action from π_A serves to test and refine the causal structure of the 
environment. An action from π_B serves to test and realize counterfactual explanations or 
goals. Through this process of selective intervention, Ze simultaneously shapes its sensory 
stream and sculpts its internal models, ensuring they remain grounded and functional. 
 
Furthermore, the outcome of an action provides critical feedback for the localization process 
described in Section 5. The sensory consequences of an enacted policy directly inform the 
system about which model's predictions were more accurate, thereby updating the confidence 
weights (the α parameter in the localization equation) and driving model refinement. Action and 
perception in Ze form a tight, reciprocal loop, where perception generates model conflict, conflict 
drives policy selection for action, and action generates new data to resolve the conflict (Ahissar 
& Assa, 2016). 
 
In conclusion, the extension of Ze to include active policies π_A and π_B, governed by a 
meta-control rule that minimizes expected total free energy, completes the framework as one of 
active, embodied cognition. Ze transcends passive Bayesian inference by using the duality of its 
generative models to generate a strategic exploration-exploitation policy. It acts not as a mere 
observer of the world, but as an autonomous agent that selectively intervenes to reduce its own 
internal dissonance, thereby actively constructing a coherent and actionable understanding of 
its environment. 

Which-Path Information as an Increase in 
Environmental Dimensionality 
The Ze architecture, as developed thus far, describes an agent navigating an environment 
defined by its latent states s. However, a critical challenge for any adaptive system is the 
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discovery that its current state space is insufficient—that hidden variables or contextual factors, 
previously unnoticed or conflated, are causally relevant. This is the problem of laten variable 
discovery and representational expansion (Gershman & Niv, 2010; Schapiro & Turk-Browne, 
2015). In Ze, we formalize this discovery process through the concept of "which-path" 
information, a term borrowed from quantum mechanics denoting information that distinguishes 
between alternative causal pathways. Here, it refers to information that reveals the existence of 
a previously hidden contextual dimension or discrete alternative. We propose that the 
incorporation of which-path information is mathematically equivalent to an expansion of the 
environmental state space, a process that necessarily amplifies internal conflict and triggers 
profound cognitive restructuring. 
 
Consider an environment where observations o are generated by a latent process that can 
follow one of several distinct causal regimes or "paths," indexed by a hidden variable e. Initially, 
the agent's models, 𝓜_A and 𝓜_B, operate on a compressed state representation s that 
marginalizes over e. The agent perceives a single, albeit potentially noisy and inconsistent, 
world. The acquisition of which-path information—through accumulated statistical regularities, a 
decisive intervention, or a salient cue—reveals that the true generative process operates in the 
expanded space s, e. The effective dimensionality of the environment, from the agent's 
perspective, increases. 
 
Formally, this expansion is represented as: 
 

s  →  (s, e) 
 
where e is a new latent variable (e.g., a context label, a hidden cause, or a discrete mode). The 
consequences of this expansion for the Ze dynamics are immediate and significant: 
 

1.​ Increase in Model Conflict (Δ𝓕 ↑): The existing generative models, 𝓜_A and 𝓜_B, 
which were parameterized for the simpler space s, suddenly become misspecified. Their 
predictions will grow increasingly inaccurate as they fail to account for the modulation 
introduced by e. Since the two models may have different sensitivities to this 
misspecification, their variational free energies will diverge. For instance, the forward 
model 𝓜_A might show a sharp rise in 𝓕_A as its physical predictions fail, while the 
inverse model 𝓜_B might struggle even more (or less) to find a coherent narrative, 
causing 𝓕_B to change differently. This divergence directly increases the global conflict 
signal Δ𝓕 = |𝓕_A - 𝓕_B| (Griffiths et al., 2015). 

2.​ Increase in Posterior Divergence (𝓘 ↑): As the models become misspecified, their 
approximate posteriors q_A and q_B will be pulled towards different regions of the 
(inadequate) state space s in a futile attempt to explain the data. One model may latch 
onto one set of spurious correlations, while the other model latches onto another. This 
leads to a marked increase in the Jensen-Shannon divergence 𝓘 = D_JS(q_A || q_B), 
indicating a loss of compatibility between their interpretations. The interference regime, 
which relies on posterior similarity, becomes untenable. 
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The joint increase in both Δ𝓕 and 𝓘 creates a powerful, compounded signal that makes 
localization inevitable. The system will reliably exceed the localization threshold θ (Section 5). 
However, this is not a localization to a point within the old state space. It is a meta-localization 
— a realization that the conflict cannot be resolved within the current representational schema 
(Tervo et al., 2016). The projection q(s) -> q(s | ŝ) defined earlier is insufficient; the resolved 
state ŝ in the old space does not exist. 
 
Therefore, the localization process must now drive a structural revision of the generative models 
themselves. This involves: 

●​ Hypothesizing the new variable e: The system must posit the existence of an 
additional latent dimension. This can be guided by the specific patterns of prediction 
errors (which-path information often manifests as residual, unexplained variance that is 
structured, not random) (Courville et al., 2006). 

●​ Differentiating the models: The expanded state space s, e may allow—or force—the 
two models to specialize further. For example, 𝓜_A might learn to predict dynamics 
conditional on e, while 𝓜_B might infer the likely value of e from narrative coherence. 
Their policies π_A and π_B (Section 6) can now generate distinct exploratory actions to 
actively identify the value of e in novel situations (Gottlieb et al., 2013). 

●​ Re-learning in the expanded space: The parameters of both models must be updated 
based on data now interpreted in the context of s, e. The meta-control policy selection 
rule will now evaluate actions based on their expected efficacy in reducing free energy in 
this richer, more veridical environment. 

 
This process formalizes a cycle of representational growth driven by irreducible conflict. 
Persistent, high-amplitude Δ𝓕 and 𝓘 are not just signals of failure but are necessary conditions 
for the system to discover that its world is more complex than previously modeled (Friston et al., 
2017). The integration of which-path information and the subsequent expansion from s to s, e is 
how Ze moves from a naive to a sophisticated understanding, capable of disentangling contexts 
and recognizing multiple causal pathways. It is the mathematical expression of a cognitive 
"aha!" moment that restructures the agent's ontology (Kounios & Beeman, 2014). 
 
In summary, which-path information acts as a catalyst for representational complexity. Its 
assimilation forces an expansion of the environmental state space, which inescapably inflates 
the core conflict signals Δ𝓕 and 𝓘 within Ze. This forces the system out of mere state-estimation 
and into a regime of model revision and dimensional learning. Thus, the very quantities that 
signal dysfunction during routine operation become the drivers of conceptual growth and 
adaptive complexity in the face of a multifaceted world. 

The Quantum Eraser as the Ze Operator 
The previous section described how the acquisition of "which-path" information, by expanding 
the state space to s, e, triggers conflict and forces structural revision. However, a sophisticated 
cognitive system must also possess the complementary ability to simplify its world model when 
contextual detail becomes irrelevant, overly costly to maintain, or actively detrimental to 
coherent action. We formalize this capacity through the Quantum Eraser Operator 𝓔, a 
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concept inspired by quantum information experiments where the erasure of path information 
restores wave-like interference patterns (Walborn et al., 2002; Kim et al., 2000). In the Ze 
architecture, 𝓔 represents a meta-cognitive operation that actively suppresses or forgets the 
conditional dependency on a specific latent variable e, effectively reducing the apparent 
dimensionality of the environment and restoring the conditions for model coherence. 
 
Consider the state of the system after it has expanded its representation to include a context 
variable e. The agent's beliefs are now conditioned on this variable: the posterior distributions 
and model predictions depend on p(e | s) or p(e | o), the probability of context given a state or 
observation. The Quantum Eraser Operator 𝓔 acts upon this conditional dependency. Formally, 
it is defined as an operation that renders the latent variable e statistically independent or 
uninformative with respect to the core state s or the observations: 
 

𝓔:  p(e | s) → const. 
 

That is, the operator transforms the conditional distribution p(e | s) into a constant function, 
meaning the probability of any particular e becomes uniform and independent of s. Equivalently, 
it can be seen as marginalizing out e or "blurring" the which-path information, making the distinct 
causal paths indistinguishable again from the perspective of the models (Scully & Drühl, 1982). 
 
The action of 𝓔 has three critical, non-intuitive consequences: 
 

1.​ It Does Not Alter Past Data: The operator 𝓔 does not erase sensory history o_{1:t} from 
memory, nor does it retroactively change the agent's belief about what physically 
occurred. The raw data and the memory of the sequence of events remain intact. This 
distinguishes it from mere forgetting. Instead, 𝓔 changes the interpretive framework 
applied to that data. It alters how the generative models attribute causes and structure to 
the past and future, moving from a fine-grained, context-dependent interpretation to a 
coarse-grained, context-independent one (Gershman et al., 2015). 

2.​ It Reduces Environmental Support: By decoupling e from s, the operator effectively 
collapses the expanded state space s, e back towards the simpler subspace s. The 
environment, as modeled by the agent, loses a dimension of distinguishing detail. The 
"paths" that were previously distinct become merged into a single, broader category. 
This is a form of adaptive abstraction or chunking, where specific instances are grouped 
under a more general schema to reduce computational load and foster generalization 
(Rabinovich et al., 2012; Tomov et al., 2021). 

3.​ It Decreases Model Conflict (Δ𝓕 ↓): This is the primary functional role of 𝓔. The high 
conflict Δ𝓕 arose because the two models 𝓜_A and 𝓜_B struggled to account for the 
nuances modulated by e. By applying 𝓔, the system simplifies the explanatory task. The 
models no longer need to account for variance attributable to the now-erased e. Their 
predictions become less precise but more broadly applicable, and their free energies 
𝓕_A and 𝓕_B are likely to converge, as both are evaluated against a less demanding, 
smoothed-out version of reality. Consequently, the global conflict signal Δ𝓕 = |𝓕_A − 
𝓕_B| decreases. 
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The triggering condition for applying the Quantum Eraser is not explicitly modeled here as an 
optimization but can be linked to sustained cognitive cost. When the system operates for an 
extended period in a high-conflict localization regime (Δ𝓕 > θ) without successfully identifying a 
stable, predictive structure for e, the meta-cognitive cost of maintaining the complex 
representation may outweigh its benefits. The eraser 𝓔 is then deployed as a "reset" or 
simplification heuristic (Wilson & Niv, 2011). 
 
The ultimate goal of this operation is the restoration of the interference regime. The criterion 
for successful interference, as established in Section 3, is: 
 

Δ𝓕 < θ 
 

By applying 𝓔 and reducing Δ𝓕 below the localization threshold θ, the system signals that the 
conflict has been resolved at a higher level of abstraction. The sharp divergence between the 
posteriors q_A and q_B subsides, and their Jensen-Shannon divergence 𝓘 decreases 
accordingly. This re-enables the constructive blending of the models' outputs, allowing for fast, 
efficient, and coherent perception-action cycles based on a simplified, more robust world model. 
 
In summary, the Quantum Eraser Operator 𝓔 completes the Ze cognitive cycle. It provides a 
formal mechanism for strategic simplification, counterbalancing the complexification driven by 
which-path information. By conditionally decoupling a latent variable, 𝓔 reduces representational 
granularity, lowers model conflict, and restores the system to a stable, interferometric state 
where perception and action can proceed efficiently. This dynamic alternation between 
differentiation (state expansion) and integration (erasure-driven simplification) mirrors 
fundamental processes in cognitive development and learning (Siegler, 2005), positioning Ze as 
a unified formalism for adaptive, resilient intelligence. 

Sleep and Wakefulness as Parameter Regimes 
The Ze architecture, with its cycles of differentiation (via which-path information) and integration 
(via the quantum eraser), provides a framework for understanding online perception and 
learning. To complete the picture of a biologically plausible and sustainable cognitive system, 
we must account for offline states of processing. We propose that the fundamental states of 
sleep and wakefulness can be formally described as distinct dynamical regimes of a core 
parameter within the Ze framework. This parameter, the path fixation strength λ, governs the 
system's commitment to maintaining a specific, detailed model of the world versus its propensity 
for representational reorganization. 
 
We introduce λ as a scalar meta-parameter that multiplicatively weights a "path-specificity" cost 
within the variational free energy functional of the forward model 𝓜_A. Let path(s) be a 
functional that quantifies the specificity or "crispness" of the model's commitment to a particular 
trajectory or partition of the state space s, e. This could be related to the entropy of the 
distribution over contexts e, the precision of state estimates, or the complexity cost of 
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maintaining fine-grained distinctions (Friston et al., 2017). The modified free energy for the 
forward model during online processing becomes: 
 

𝓕_A^λ = 𝓕_A + λ  path(s) 
 
The value of λ determines the operational regime of the entire Ze system: 
 

1.​ Wakefulness: The High-λ Regime (λ ≫ 1). In the waking state, the primary imperative 
is to maintain a precise, contextually specific, and immediately actionable model of the 
world to support real-time perception and action (Mackay, 2021). A high value of λ 
strongly penalizes any loss of path specificity within 𝓕_A^λ. This forces the forward 
model 𝓜_A to commit to a single, well-defined interpretation of sensory data to minimize 
its free energy. It suppresses the exploration of alternative state configurations or the 
merging of contextual distinctions. Consequently: 

●​ Model Commitment is High: The posterior q_A(s, e) is sharp and confident. 
●​ Interference is Conditionally Permitted: Interference with 𝓜_B occurs only 

when the counterfactual model's narrative strongly aligns with this committed 
path ((𝓘 ≈ 0). Otherwise, the high λ reinforces the dominance of the currently 
selected forward model interpretation. 

●​ Localization is Goal-Directed: Conflict-driven localization (Δ𝓕 > θ) is primarily 
resolved by seeking new data (via active sensing) to refine the existing 
high-specificity model, not by radically reconfiguring it. 

●​ The Quantum Eraser is Inactive: The operation 𝓔 is suppressed, as erasing 
path details would catastrophically increase the λ-weighted path cost. 

2.​ Sleep: The Low-λ Regime (λ → 0). During sleep, the constraints of real-time 
sensorimotor interaction are relaxed. We model this as a dramatic reduction in the path 
fixation parameter, λ → 0 (Hobson & Friston, 2012; Lewis & Durrant, 2011). The modified 
free energy simplifies: 𝓕_A^{λ → 0} ≈ 𝓕_A. The high cost of maintaining precise, 
context-dependent distinctions is removed. This liberates the system and enables 
profound offline processing: 

●​ Exploration of State Space: Without the penalty for low specificity, the forward 
model can explore a much broader landscape of potential state configurations 
and associations. This facilitates the replay and consolidation of memories, 
allowing sequences to be re-experienced and integrated without the pressure of 
committing to a single "real" path (Diekelmann & Born, 2010). 

●​ Activation of the Quantum Eraser: The low-λ regime is the natural habitat for 
the quantum eraser operator 𝓔. With the cost of erasure minimized, the system 
can safely decouple spurious or overly detailed contextual associations (p(e | s) 
→ const). This promotes generalization by extracting statistical invariants and 
forgetting irrelevant details, a process linked to synaptic downscaling and 
memory optimization (Tononi & Cirelli, 2014). 

●​ Model Restructuring and Integration: The reduced λ allows the two models, 
𝓜_A and 𝓜_B, to interact more freely. The barrier to interference 𝓘 is effectively 
lowered, enabling the integration of narrative structures from 𝓜_B (e.g., 
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semantic or episodic knowledge) with the sensorimotor statistics of 𝓜_A. This 
cross-model integration is hypothesized to underly creative insight and 
procedural memory consolidation (Stickgold & Walker, 2013). 

●​ Resolution of Lingering Conflict: High-conflict states (Δ𝓕 > θ) that could not be 
efficiently resolved online due to the high cost of model revision can be 
addressed offline. The system can test radical reparameterizations of its models 
without behavioral risk. 

 
Thus, sleep is formally defined as the dynamical reduction of the path fixation parameter 
λ. The transition from wakefulness to sleep corresponds to a gradual or phase-transition-like 
decrease in λ, switching the Ze system from a mode of precise, committed, real-time inference 
to a mode of exploratory, integrative, and simplifying computation (Gomez-Ramirez & Sanz, 
2013). The cyclical alternation between high and low λ regimes ensures that the system 
remains both adaptive to immediate demands (wakefulness) and capable of long-term 
optimization and structural learning (sleep). 
 
In conclusion, by incorporating a single, metabolically or neuromodulatorily regulated parameter 
λ into the core free energy functional, the Ze framework naturally accommodates the 
fundamental cycle of sleep and wakefulness. This elevates Ze from a model of momentary 
cognition to a model of embodied, cyclical intelligence, where offline states are not passive but 
are essential, active phases of cognitive maintenance, reorganization, and growth. 

Connection to the Double-Slit Experiment 
The mathematical architecture of Ze, culminating in the dynamics of interference (𝓘), conflict 
(Δ𝓕), localization, and erasure, is not merely an abstract cognitive model. It finds a profound 
and clarifying analogy in one of the most fundamental experiments in physics: the double-slit 
experiment and its modern variants incorporating "which-path" information and quantum 
erasure. This analogy is not merely poetic but serves as a rigorous formal parallel, suggesting 
that the principles governing quantum measurement and wave function collapse may share a 
deep structural homology with the principles governing cognitive inference and model selection 
(Bruza et al., 2015; Busemeyer & Bruza, 2012). The following table and analysis elucidate this 
connection. 
 
Table 1 

Double-Slit 
Experiment 

Ze Cognitive 
Architecture 

Formal Analogy 

Wave Function / 
Superposition 

Model ​
Compatibility 

A quantum system exists in a superposition of passing through both slits. 
In Ze, a state of low conflict (ΔF ↓) and high posterior compatibility (I ≈ 0) 
allows multiple generative models (M_A, M_B) to co-exist in a blended, 
superposed" perceptual state. 
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Interference ​
Pattern 

Constructive​
Interference ​
Regime 

The wave-like superposition produces an interference pattern on the 
detector. In Ze, compatible posteriors constructively interfere, leading to 
enriched, coherent percepts and efficient action selection (π)  based on 
fused predictions. This is the default state for a coherent world-model. 

Which-Path​
Information 

Increase​
in ΔF 

Placing a detector to determine which slit a particle passes through 
provides "which-path" information. In cognition, discovering a hidden 
contextual variable e (e.g., a latent cause) provides analogous 
discriminative information. This acquisition forces an expansion of the 
state space (s → (s, e)), which increases model conflict (ΔF ↑) as the 
existing models become misspecified. 

Collapse​
(Wave → 
Particle) 

Localization​
Phase​
Transition 

The act of measurement (obtaining which-path info) collapses the wave 
function to a particle-like state with a definite path. In Ze, exceeding the 
conflict threshold (ΔF > θ) triggers a localization phase transition. The 
system collapses from a blended perceptual state into a specific, 
resolved interpretation ŝ, suppressing interference. 

Quantum​
Eraser 

Eraser​
Operator E 

A quantum eraser setup retroactively erases the which-path information, 
recovering an interference pattern even after detection. In Ze, the 
operator E acts by marginalizing out or decorrelating the contextual 
variable e (p(e | s) → const). This reduces the effective environmental 
dimensionality, lowers conflict (ΔF ↓), and restores the conditions for 
model interference (I → 0). 

Decoherence 
(Environment) 

Self-Induced​
Decoherence 

Interaction with a macroscopic environment causes rapid decoherence, 
effectively performing a continuous "measurement." In Ze, the system's 
own commitment to a specific action policy (π_A or π_B) and its ensuing 
sensorimotor engagement with the world act as a continuous 
self-measurement. This ongoing interaction favors the "collapsed," 
localized state of the forward model M_A during wakefulness (high-λ 
regime), maintaining a classical, definite perceptual reality 
(Atmanspacher & beim Graben, 2007). 

Analysis of the Correspondence: 
The core of the analogy lies in the treatment of information and its effect on coherence. In 
quantum mechanics, the system's state is described by a wave function whose phase 
coherence allows interference. The acquisition of discriminating information (which-path) 
destroys this coherence, leading to a definite but impoverished (non-interfering) state. The 
erasure of that information can, under specific conditions, restore coherence (Walborn et al., 
2002). 
 
In the Ze architecture, the "wave function" is replaced by the landscape of compatible Bayesian 
beliefs across generative models. The coherence measure is the Jensen-Shannon divergence 
𝓘. The acquisition of discriminating cognitive information—which-path information about a 
hidden context—destroys this belief compatibility (𝓘 ≫ 0), forcing a definite but cognitively 
costly "collapsed" state (localization). The cognitive erasure operator 𝓔 restores compatibility, 
allowing for flexible, interference-based processing once more. 
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This parallel suggests that the transition from quantum-like to classical-like behavior is not 
exclusive to microscopic physics but may be a general feature of any information-processing 
system that must balance the maintenance of multiple potential states (for robustness and 
prediction) with the need to commit to a single state for action (Khrennikov, 2010). The waking 
brain, constantly acting in the world, operates under a regime of continuous self-induced 
decoherence, maintaining a "collapsed," classical stream of consciousness. In contrast, during 
sleep or reflective thought (low-λ regime), the decoherence pressure is reduced, allowing for 
more quantum-like, superposed exploration of ideas and memories—a process that may 
underpin creativity and insight (Merali, 2015). 

Conclusion of the Analogy: 
Thus, the double-slit experiment serves as a powerful metaphysical and mathematical metaphor 
for the Ze formalism. It provides an existence proof in nature for a system whose observable 
behavior (interference vs. particle tracks) is radically determined by the presence or absence of 
information that distinguishes between internal possibilities. Ze posits that cognition operates 
under an identical principle: our perception of a coherent, classical reality is actively maintained 
by the continuous resolution of conflict between internal generative models, and the disruption 
of this process is not a failure but a necessary gateway to learning and representational change. 

Connection to the Double-Slit Experiment 
The Ze architecture, with its formalization of interference, conflict, and erasure, transcends a 
mere cognitive model. It establishes a profound structural isomorphism with one of the 
foundational experiments of modern physics: the double-slit experiment and its extensions 
into quantum information theory. This connection is not simply metaphorical but offers a 
rigorous, unifying mathematical framework that suggests principles of quantum measurement 
and coherence have direct analogues in high-level cognitive processes (Busemeyer & Bruza, 
2012; Bruza et al., 2015). The following schema delineates this formal correspondence, which 
we will subsequently unpack. 

Table 2 

Physical Concept (Double-Slit) Ze Cognitive Architecture Formal Ze Expression / Mechanism 

Wave Function (Superposition) Model Compatibility Low global conflict, high posterior 
compatibility allows blended model 
states. 

Interference Pattern Constructive Interference 
Regime 

Low Jensen-Shannon divergence 
enables fused percepts:  𝐼≈0

Which-Path Information State Space Expansion Acquisition of hidden variable  expands 𝑒
state: , increasing conflict: . 𝑠→(𝑠, 𝑒) Δ𝐹↑
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Collapse (Measurement) Localization Phase 
Transition 

Threshold exceedance triggers discrete 
shift:  projection to . Δ𝐹 > θ⇒ 𝑠^

Quantum Eraser Erasure Operator E Application of E decorrelates context: p(e 
| s) → const, reducing ΔF, restoring I ≈ 0. 

Decoherence (Environment) Self-Induced Decoherence 
via Action 

Commitment to a policy π_𝐴 𝑜𝑟 π_𝐵 
enacts continuous "measurement," 
stabilizing the localized percept during 
wakefulness. 

Analysis of the Structural Isomorphism 
1.​ Superposition and Model Compatibility. In the quantum double-slit setup, a single 

particle is described by a wave function that is a superposition of passing through both 
slits simultaneously. There is no "which-path" information, and the system exists in a 
coherent state of multiple possibilities (Feynman et al., 1965). Analogously, in the Ze 
architecture, a state of low model conflict (Δ𝓕 ≈ 0) and high posterior compatibility ((𝓘 ≈ 
0) signifies that the two generative models 𝓜_A and 𝓜_B are promoting statistically 
indistinguishable interpretations of the sensory stream. The cognitive system resides in a 
"superposed" state where multiple coherent explanations are simultaneously viable and 
actively blended, leading to robust perception (Pothos & Busemeyer, 2013). 

2.​ Interference and the Interference Regime. The physical superposition results in a 
wave-like interference pattern on the detection screen, a hallmark of quantum 
coherence. In Ze, the analogous phenomenon is the constructive interference regime, 
where the compatible posteriors q_A and q_B are fused. This fusion yields percepts and 
predictions that are more precise and contextually enriched than those of either model 
alone—a cognitive "interference pattern" that is the hallmark of a coherent, 
well-understood situation. 

3.​ Which-Path Information and Increased Conflict. Introducing a detector to determine 
the particle's path constitutes an act of measurement that acquires "which-path" 
information. This destroys the wave function's coherence, collapsing it into a particle-like 
state with a definite path, and the interference pattern vanishes (Scully et al., 1991). The 
cognitive parallel is the acquisition of a latent contextual distinction—the "which-path" 
information that differentiates two previously confounded causal narratives. As 
formalized in Section 7, this expands the state space from s to s, e. The existing models, 
tuned to the simpler space, become misspecified. Their predictions diverge, causing a 
sharp increase in the global conflict signal Δ𝓕. The cognitive "interference pattern" 
(coherent perception) is lost. 

4.​ Collapse and Localization. The quantum collapse is an all-or-nothing transition from a 
wave (delocalized, interfering) to a particle (localized, definite) description. In Ze, the 
analogous event is the localization phase transition (Section 5). When Δ𝓕 exceeds the 
threshold θ, the system undergoes a qualitative shift from the parallel, interferometric 
processing of the two models to a serial, diagnostic mode. It "collapses" onto a specific, 
resolved state ŝ that minimizes a weighted model conflict. This transition models 
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cognitive events such as sudden disambiguation, error detection, or the instantiation of a 
specific hypothesis. 

5.​ Quantum Eraser and the Erasure Operator. The quantum eraser experiment 
demonstrates that if which-path information is erased in a coherent manner after the 
particle has been detected, the interference pattern can be recovered (Walborn et al., 
2002). This highlights that it is the existence of potentially knowable distinguishing 
information, not the act of observation per se, that destroys coherence. In Ze, the 
Quantum Eraser Operator 𝓔 (Section 8) performs precisely this function. It acts by 
decorrelating the contextual variable e from the core state s (p(e | s) → const). This 
erasure of discriminative information reduces the effective dimensionality of the 
environment, lowers the model conflict Δ𝓕, and restores the conditions for posterior 
compatibility (𝓘 → 0), thereby "recovering" the cognitive interference regime. 

6.​ Decoherence and Self-Induced Stabilization. In open quantum systems, interaction 
with a large environment causes rapid decoherence, continuously localizing the system 
into a classical state (Zurek, 2003). The Ze architecture exhibits a powerful analogue: 
self-induced decoherence through action. The system's own commitment to an 
action policy (π_A or π_B) and the resultant sensorimotor engagement with the world 
generate a continuous stream of proprioceptive and exteroceptive feedback. This 
feedback acts as a constant "measurement," anchoring perception to a specific, 
actionable interpretation—the forward model's 𝓜_A "classical" reality. This process is 
dominant in the high-λ wakefulness regime, ensuring perceptual stability (Clark, 2013). 

 
The formal correspondence between the double-slit experiment and the Ze architecture 
suggests that the mathematical structures describing quantum coherence and measurement 
may be universal for any system that must manage the trade-off between maintaining multiple 
potential states (for robustness and prediction) and committing to a single state for decisive 
action. Ze provides a precise cognitive instantiation of these principles, framing perception, 
learning, and consciousness itself as dynamic processes of interference, measurement, and 
erasure played out on the stage of embodied action. 

The Key Formal Conclusion 
The preceding sections have meticulously constructed the Ze architecture, drawing a formal 
analogy with quantum mechanics to frame cognitive dynamics. This leads to a pivotal and 
non-trivial conclusion that reframes a foundational puzzle in both cognitive science and 
foundational physics. The Ze formalism demonstrates that the phenomenon of 
"collapse"—the discrete transition from a state of multiple possibilities to a single, 
definite outcome—is not a fundamental postulate or an exogenous intervention. Rather, it 
is an emergent, optimization-driven phase transition within a system that maintains 
competing internal models of the world. 

Reframing the Problem of Collapse 
In quantum mechanics, the collapse of the wave function is often treated as a primitive postulate 
of the Copenhagen interpretation—an unexplained, instantaneous event triggered by 
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measurement (von Neumann, 1932). This has long been a source of conceptual unease, 
prompting interpretations from many-worlds to objective collapse theories. In cognitive science, 
analogous phenomena—such as the sudden resolution of perceptual ambiguity (e.g., the 
Necker cube), the crystallization of an insight, or the commitment to a single action plan amidst 
uncertainty—are similarly described but often lack a unifying formal principle beyond descriptive 
thresholds or stochastic switches (Hohwy et al., 2008). 
 
The Ze architecture provides a unifying formal substrate for both domains. Here, "collapse" is 
not a mysterious axiom but the natural, observable consequence of a continuous, 
resource-optimizing process. The system is perpetually engaged in minimizing variational free 
energies (𝓕_A, 𝓕_B) that quantify the accuracy and complexity of its dual world models. The 
state of multiple possibilities—the "superposition"—corresponds to the interference regime, 
where the models' posteriors are compatible ((𝓘 ≈ 0) and their free energies are low and 
comparable (Δ𝓕 ≈ 0). In this regime, the system enjoys the benefits of a blended, robust 
representation. 

Collapse as an Optimization-Driven Phase Transition 
The transition out of this state is triggered by an optimization failure. The acquisition of 
"which-path" information—sensory data that reveals a previously hidden contextual variable 
e—fundamentally changes the structure of the inference problem. The existing models, 
optimized for a simpler state space (s), become severely misspecified when confronted with 
data generated from the expanded space s, e. Their attempts to minimize their individual free 
energies under this new constraint cause their solutions to diverge. One model may adjust its 
parameters to account for the new variable in one way, while the other model finds a different, 
incompatible solution. 
 
This divergence is quantified by the model conflict Δ𝓕, which rises sharply. The system 
reaches a point where maintaining the blended, "superposed" state is no longer optimal, as it 
would require tolerating high and conflicting prediction errors from both models simultaneously. 
This is suboptimal from a variational perspective, which seeks to minimize total expected 
prediction error (Friston, 2010). The localization threshold θ represents the system's tolerance 
for this inefficiency. 
 
When Δ𝓕 > θ, the system undergoes a phase transition (Section 5). Mathematically, this is a 
bifurcation in the dynamics of the coupled inference processes. The stable attractor 
corresponding to the blended interference regime loses stability, and a new set of 
attractors—corresponding to resolved, model-specific interpretations—becomes dominant 
(Tschacher & Haken, 2007). The system "falls into" one of these new basins of attraction 
through the projection operation q(s) → q(s | ŝ), where ŝ is the state that minimizes a weighted 
sum of the models' free energies. This discrete jump is the collapse. 
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Agency and Measurement Without Mystery 
This formulation elegantly demystifies the role of the "observer" or "measurement." In the 
quantum analogy, the observer is not an external, classical entity forcing a collapse. Instead, the 
"measurement" is the process by which one part of the system (e.g., a detector, or in cognition, 
a specific action policy) becomes correlated with the state of another part, acquiring 
"which-path" information (Riedel et al., 2016). In Ze, this is modeled by the system's own active 
engagement. When the system selects and enacts a specific policy π_A or π_B (Section 6), it is 
effectively performing a self-measurement. The action commits the system to a specific course, 
generating sensory consequences that are highly informative for one model and potentially 
disconfirming for the other. This active sampling of the environment serves as the continuous 
"measurement" that stabilizes the "collapsed," classical stream of perception during 
wakefulness. 
 
The key insight is that collapse is an adaptive, resource-optimizing response to 
unsustainable internal conflict. It is the system's way of breaking a computational deadlock. 
By committing to a single interpretation (ŝ), it can focus its resources, generate decisive actions, 
and pursue a coherent learning trajectory to reduce free energy under the newly clarified 
(though possibly simplified or provisional) model. 

Implications and Unification 
This conclusion has significant implications. For cognitive science, it provides a rigorous 
variational account of discrete perceptual and decision-making events, linking them to the 
continuous dynamics of predictive processing (Clark, 2013). It frames insight and ambiguity 
resolution not as lucky guesses but as optimal transitions in a complex adaptive system. 
 
For the quantum cognition paradigm, it strengthens the case for viewing quantum probability not 
just as a useful descriptive tool for paradoxical human behavior, but as indicative of a deeper, 
shared computational logic between microscopic and macroscopic information-processing 
systems (Busemeyer & Bruza, 2012). The "collapse" in both realms can be seen as the 
resolution of a system struggling to maintain coherence across competing frameworks for 
explaining evidence. 
 
In summary, the Ze formalism culminates in a powerful synthetic statement: Collapse is not 
postulated; it is computed. It is the inevitable, optimization-driven transition that occurs when 
the cost of maintaining multiple competing realities outweighs the benefit, forcing a complex 
system to commit, act, and thereby define its experienced world. 

Why This is a Strict Theory, Not a Metaphor 
The formal analogy between the Ze cognitive architecture and quantum phenomena, particularly 
the double-slit experiment, invites a critical distinction: Is Ze merely a suggestive metaphor, or 
does it constitute a strict scientific theory? We argue decisively for the latter. Ze is not a loose 
analogy that borrows quantum terminology for poetic effect. It is a rigorous, formal framework 
grounded in established mathematics, which provides a novel architectural explanation for 
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cognitive dynamics and generates falsifiable empirical predictions. Its strength lies in four pillars 
of theoretical rigor. 

It is Built on Standard Variational Mechanics. 
The entire edifice of Ze is constructed from the mathematics of variational inference and the free 
energy principle, which are standard tools in contemporary theoretical neuroscience and 
machine learning (Friston, 2010; Blei et al., 2017). The core quantities—the variational free 
energies 𝓕_A and 𝓕_B (Section 2)—are not quantum constructs but well-defined functionals 
from Bayesian probability theory. Their minimization is a formal optimization procedure for 
approximate Bayesian inference and learning (Dayan et al., 1995). The conflict measure Δ𝓕 
and the interference measure 𝓘 (the Jensen-Shannon divergence) are standard 
information-theoretic quantities (Lin, 1991). Therefore, Ze’s foundation is not speculative physics 
but applied mathematics with a proven track record in modeling perception, action, and learning 
(Buckley et al., 2017). The quantum-like phenomena emerge from the interaction dynamics of 
these classically defined components, not from imported quantum axioms. 

It Does Not Alter Schrödinger's Equations. 
A common pitfall of quantum-inspired cognitive theories is the temptation to postulate novel 
quantum dynamics in the brain, a stance fraught with biophysical and scalability issues 
(Tegmark, 2000). Ze makes no such claim. It remains entirely agnostic about the microphysical 
implementation. The theory does not propose that Schrödinger's equation governs neural 
activity or that superposition occurs at a neuronal level. Instead, it posits that the computational 
and statistical properties of a system performing variational inference over dual generative 
models can exhibit formal isomorphisms with the mathematical structure of quantum 
measurement. The "wave-like" and "particle-like" behaviors are descriptions of 
information-processing regimes (interference vs. localization), not of physical states of matter. 
Thus, Ze is compatible with all known neurophysiology while offering a higher-level functional 
explanation (Brette, 2022). 

It Adds a Novel Architectural Level of Explanation. 
Ze transcends metaphor by proposing a specific, testable architectural hypothesis about 
cognitive organization. It is not merely saying "cognition is like quantum mechanics." It is 
proposing that a necessary feature of advanced intelligence is the maintenance of two distinct, 
asymmetric generative models—a causal/forward model (𝓜_A) and a counterfactual/inverse 
model (𝓜_B)—whose interaction is governed by the minimization of their combined free 
energies (Sections 1 & 2). This duality and the resulting conflict dynamics (Δ𝓕) provide a formal, 
architectural explanation for phenomena that are otherwise described separately: perceptual 
multistability, metacognitive confidence, epistemic foraging, and sleep-related memory 
reorganization (Shea et al., 2014; Findling et al., 2023). The theory makes concrete claims: that 
neural representations corresponding to q_A and q_B should be dissociable, that their relative 
precision should modulate behavioral interference, and that the global conflict signal Δ𝓕 should 
correlate with neural markers of surprise and with the triggering of exploratory behaviors. 

© Under CC BY-NC-ND 4.0 International License | Longevity Horizon, 2(2)​ ​ ​ ​ 25 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://longevity.ge/index.php/longhoriz


 

It Yields New, Falsifiable Experimental Predictions. 
The ultimate criterion for a strict theory is its ability to generate novel, testable predictions. Ze 
generates a rich set of such predictions across levels of analysis: 
 

●​ Neurophysiological: The theory predicts specific neural signatures. We should observe 
two distinct but interacting neural populations or networks whose activity patterns 
correspond to the evolving posteriors q_A and q_B. The global conflict signal Δ𝓕 should 
be encoded in neuromodulatory systems (e.g., norepinephrine or acetylcholine) or 
large-scale synchronization measures (e.g., frontal theta power), correlating with pupil 
dilation and behavioral markers of uncertainty (Aston-Jones & Cohen, 2005). The 
application of the "quantum eraser" operator 𝓔 (e.g., during sleep or after task mastery) 
should be observable as a decoupling of functional connectivity between networks 
encoding specific contextual details and those encoding general schemata (Tomov et al., 
2021). 

●​ Behavioral/Cognitive: The model makes quantitative predictions about reaction times 
and error rates. Transitions from the interference regime ((𝓘 ≈ 0) to the localization 
regime (Δ𝓕 > θ) should be marked by increased response time variability and a higher 
probability of exploratory actions, as the system searches for ŝ. The parameter θ 
(localization threshold) should be manipulable; for instance, stress or cognitive load 
should lower θ, making individuals more prone to premature perceptual "collapse" or 
decision-making. The theory also predicts that during the low-λ sleep regime, learning 
paradigms should show enhanced generalization and schema formation, as the erasure 
operator 𝓔 is more active (Lewis & Durrant, 2011). 

●​ Computational: The architecture can be implemented as an active inference agent in 
simulated or robotic environments. We can test whether an agent equipped with the dual 
𝓜_A / 𝓜_B structure and the Ze conflict-resolution dynamics outperforms a 
single-model agent in environments requiring the discovery of hidden contexts 
(which-path information) and the flexible switching between exploratory and exploitative 
policies. 

 
In conclusion, Ze qualifies as a strict theory because it is formally grounded, non-contradictory 
with underlying physics, architecturally specific, and empirically vulnerable. It uses the 
mathematical isomorphisms with quantum formalism not as a metaphysical claim but as a 
powerful guiding principle to discover a previously undescribed level of cognitive organization. 
The theory does not reduce mind to quantum physics; instead, it suggests that certain deep 
principles of inference, information, and measurement manifest in both domains, providing a 
unified formal language to describe how systems—from particles to persons—navigate a world 
of hidden possibilities. 

The Minimal Testable Prediction 
A rigorous theory must ultimately be evaluated against empirical evidence. While the Ze 
architecture generates a broad range of predictions, a single, minimal, and critical prediction can 
serve as a decisive test to distinguish it from alternative frameworks, particularly from standard 
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models of quantum decoherence applied to cognition. This core prediction concerns the role of 
action in resolving perceptual or cognitive ambiguity. Specifically, Ze predicts that in 
scenarios of high model conflict (Δℱ > θ), the active alternation of policies based on 
competing models (π_A and π_B) will lead to faster localization (i.e., a collapse to a 
resolved state ŝ) compared to passive observation or measurement. This prediction 
directly contradicts the expected dynamics of a system undergoing standard environmental 
decoherence and highlights the active, interventionist nature of the Ze agent. 

The Prediction in Context 
Recall that localization in Ze is the phase transition triggered when conflict exceeds a threshold: 
Δℱ > θ. The subsequent projection to a resolved state ŝ is the cognitive analogue of wave 
function collapse. The key question is: What factors influence the rate or latency of this 
transition once conflict is high? 
 
In standard decoherence theory, as applied to open quantum systems, the transition from a 
coherent superposition to a classical mixture (the emergence of "pointer states") is driven by the 
uncontrolled interaction of the system with a large, noisy environment (Zurek, 2003). The 
process is passive. Information about the system becomes encoded in the environment through 
entanglement, and the rate of decoherence depends on environmental parameters (e.g., 
temperature, interaction strength) and the system's own susceptibility. An observer measuring 
the system does not fundamentally alter this passive process; they merely access the 
already-decohered information. In a cognitive metaphor of passive decoherence, one would 
expect perceptual resolution to occur at a speed determined by the inherent noise in neural 
processing and the accumulation of passive sensory evidence (Kvam et al., 2015). 
 
Ze proposes a fundamentally different mechanism. Localization is not a passive environmental 
washout but an active inference process driven by the imperative to minimize expected free 
energy. When conflict is high, the system is not a passive observer; it is an agent with two 
competing action policies, π_A and π_B, each derived from a different world model (Section 6). 
The meta-control rule selects actions from the policy expected to minimize total future free 
energy (ℱ_A + ℱ_B). Critically, active alternation between these policies is a form of 
interventionist exploration. An action from π_A tests the predictions of the forward causal 
model, while an action from π_B tests the counterfactual narrative. Each action generates highly 
informative, disambiguating sensory feedback that is specifically tailored to reduce the 
uncertainty of one model relative to the other (Gottlieb & Oudeyer, 2018). 

The Mechanism for Accelerated Localization 
This active, alternating intervention accelerates localization through two synergistic 
mechanisms: 
 

1.​ Rapid Information Gain: Passive observation provides data that is ambiguous with 
respect to the competing models. In contrast, an action chosen by π_A is designed to 
create an outcome that ℳ_A predicts confidently but that would be surprising under ℳ_B 
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(and vice-versa). This targeted sampling yields high diagnostic power, sharply increasing 
the evidence in favor of one model over the other. This rapidly widens the free energy 
gap (Δℱ), reinforcing the dominance of the winning model and solidifying the projection 
to its preferred state ŝ (Pezzulo et al., 2013). 

2.​ Precision Amplification: In active inference frameworks, the selection and execution of 
an action are accompanied by an increase in the precision (inverse variance) assigned 
to the sensory consequences expected under the chosen policy (Friston et al., 2012). 
This precision weighting amplifies the impact of the resulting prediction error. Therefore, 
when an action from π_A yields the predicted outcome, the ensuing prediction error for 
ℳ_B is not only large but is also assigned high precision, causing a dramatic increase in 
ℱ_B. This precision-modulated signal acts as a powerful accelerator for the localization 
transition, a mechanism absent in passive observation. 

 
Therefore, an agent following the Ze meta-control rule will actively seek out interventions that 
are maximally informative for resolving its internal conflict. This strategic exploration should lead 
to a significantly shorter latency between the onset of high conflict (Δℱ > θ) and the 
completion of the localization transition (stable commitment to ŝ), compared to an agent or 
system that is only allowed to passively view an unfolding, ambiguous scenario. 

Experimental Design and Distinction from Alternatives 
This prediction can be tested in behavioral experiments. A paradigm could involve an 
ambiguous perceptual decision-making task or a volatile bandit task where the underlying 
rewarding context (the "which-path" variable e) changes unpredictably (Findling et al., 2023). 
The key manipulation is the availability of interventionist actions versus passive observation 
following a change-point that induces high conflict. 
 

●​ Active Condition (Ze-predicted): Participants have access to two distinct types of 
actions. One action type (e.g., a "probe" button) provides information specifically 
diagnostic of the physical contingencies (testing ℳ_A). The other (e.g., a 
"hypothesis-test" button) provides information diagnostic of the rule or context (testing 
ℳ_B). Ze predicts that participants who actively alternate between these action types 
following a change-point will identify the new correct state ŝ faster and with fewer total 
observations than those in a passive condition. 

●​ Passive Observation Condition (Decoherence baseline): Participants see the 
outcomes generated by a pre-programmed sequence of actions or by a yoked control, 
receiving identical sensory information but without the ability to choose interventions. 
Standard models of evidence accumulation or passive decoherence predict that 
resolution time will depend only on the information rate, not on its active or passive 
nature. 

 
A confirmation of faster localization in the active condition would provide strong support for Ze's 
core tenet that cognitive collapse is an optimization process driven by active, model-based 
intervention. It would falsify models that treat perception as a purely passive accumulation 
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process or as a decoherence-like washout by unstructured noise. This minimal testable 
prediction thus serves as a crucial empirical linchpin for the entire Ze formalism. 
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