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Abstract 
The comprehensive mapping of cellular lineages from the zygote to a fully formed organism 
remains a fundamental and unresolved challenge in developmental biology. While modern 
single-cell technologies offer snapshots of cellular heterogeneity, they lack the inherent, 
permanent markers required to trace progeny through the complex events of asymmetric 
division and migration over time. This work introduces the Tkemaladze Method, a novel 
lineage-tracing approach that utilizes mutant mitochondrial DNA (mtDNA) as a stable, 
inheritable genetic label. The method involves the isolation of mitochondria from cytoplasts 
harboring known pathogenic mtDNA mutations and their microinjection into murine embryonic 
stem cells (mESCs). We confirmed successful transfer and functional integration via 
fluorescence microscopy and quantitative PCR. These labeled progenitor cells were used to 
generate chimeric embryos, where we demonstrated stable heteroplasmy and faithful 
inheritance of the mutant mtDNA in clonal progeny throughout development. Using fluorescent 
reporters, we visualized the fate of individual progenitors, enabling the quantitative construction 
of a detailed cytogenealogical map across tissues like the central nervous system, liver, and 
myocardium. A key finding was the tissue-specific segregation of mitochondrial tags, revealing 
selective pressure in high-energy-demand tissues. The Tkemaladze Method thus provides an 
unprecedented, powerful tool for fundamental developmental biology, disease modeling, and 
tracking the fate of transplanted cells in regenerative medicine. 
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Introduction 
The transformation of a single fertilized egg into a complex multicellular organism, a process 
known as ontogeny, is a symphony of precisely orchestrated cell divisions, differentiation 
events, and migrations. A central, long-standing ambition in developmental biology has been to 
chart this intricate journey by creating a complete fate map—a detailed cytogenealogical tree 
that delineates the progeny of every progenitor cell, tracing all lineages back to the zygote (Klein 
& Simons, 2011). Such a map would not only satisfy a fundamental curiosity about our biological 
origins but would also provide an indispensable roadmap for understanding the etiology of 
congenital disorders, the principles of tissue regeneration, and the aberrant cellular dynamics 
underlying cancer (Wagner & Klein, 2020). 
 
The quest to unravel cell lineage has a rich history, beginning with direct observation of 
invertebrate embryos and evolving to include physical labeling techniques. Classical methods, 
such as the intracellular injection of fluorescent dyes like rhodamine dextran or the use of vital 
stains, provided the first glimpses into embryonic cell fate (Kretzschmar & Watt, 2012). While 
revolutionary for their time, these approaches are inherently limited by the dilution of the label 
with each successive cell division, ultimately rendering long-term, organism-wide tracing 
impossible. The advent of genetic labeling marked a significant leap forward. The Cre-loxP 
system, for instance, allows for the heritable expression of reporter genes in specific cell 
populations and their descendants (Sauer & McDermott, 2004). Landmark studies using this 
system have illuminated the origins of numerous tissues and organs. However, Cre-loxP is 
typically driven by promoters that define a population of cells at a given time, making it difficult to 
trace the fate of individual progenitor cells and their clonal output with single-cell resolution (Guo 
et al., 2019). Furthermore, the stochastic nature of recombination and potential for promoter 
activity outside the intended lineage can confound the interpretation of lineage relationships. 
 
In the current genomic era, single-cell RNA sequencing (scRNA-seq) has emerged as a 
powerful tool for cataloging cellular diversity. By measuring the transcriptomes of thousands of 
individual cells, researchers can infer developmental trajectories and construct pseudo-temporal 
ordering models (Tritschler et al., 2019; Qiu et al., 2022). However, as powerfully noted by 
Wagner and Klein (2020), these trajectories are computational inferences based on correlative 
molecular states; they capture a cell's current identity but cannot reliably reveal its past mitotic 
history or clonal relationships across the entire organism. They provide a "family resemblance" 
but not a verifiable family tree. More direct genetic barcoding methods involve the introduction of 
unique DNA sequences into cells, often via viral integration or CRISPR-Cas9 genome editing, 
which can be read out later to reconstruct lineages (McKenna et al., 2016; Alemany et al., 
2018). While powerful, these methods face challenges including variable viral integration 
efficiency, potential silencing of transgenes, and the fact that CRISPR-Cas9-based scarring can 
induce DNA damage responses that may inadvertently alter cell fate or viability (Alemany et al., 
2018; Bowling et al., 2020). 
 
Therefore, a critical technological gap persists: the lack of a method to introduce a stable, 
neutral, and heritable genetic marker that can be passed from a single progenitor cell to all its 
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descendants without significant dilution, functional interference, or ethical and technical 
complexities associated with nuclear genome editing. This method must allow for 
high-resolution, clonal reconstruction of cellular lineages throughout the entire course of in vivo 
development. 
 
We hypothesized that an elegant solution to this problem lies within a naturally occurring, 
cytoplasmic, and genetically distinct cellular component: the mitochondrion. Mitochondria are 
semi-autonomous organelles possessing their own multi-copy, circular genome, which is 
inherited independently of the nuclear DNA (Stewart & Chinnery, 2015). Pathogenic mutations in 
mtDNA, such as large-scale deletions or point mutations, are known to be stably maintained 
and segregate in a state known as heteroplasmy within cell populations (Gitschlag et al., 2016). 
The level of heteroplasmy can shift due to genetic bottlenecks during development and can be 
subject to selective pressures based on cellular energy demands (Burgstaller et al., 2014; Wei 
et al., 2019). We postulated that the directed transplantation of mitochondria carrying unique, 
identifiable mutant mtDNA sequences into progenitor cells would effectively "label" those cells. 
This mutant mtDNA would then be stably co-inherited by all daughter cells, serving as a 
permanent, non-dilutable genetic barcode that is neutral in the sense that it does not directly 
alter the nuclear genetic code. 
 
The central aim of this work is to develop, optimize, and rigorously validate this novel 
experimental approach, which we have termed the Tkemaladze Method. This report details the 
successful implementation of this method, from the isolation and transfer of mutant mitochondria 
into embryonic stem cells to the generation of chimeric organisms and the subsequent 
reconstruction of a quantitative cytogenealogical map. We demonstrate that the Tkemaladze 
Method provides an unprecedented, powerful platform for tracing cell lineage, revealing not only 
migratory patterns and contributions to tissues but also the functional selection pressures that 
shape organismal development. 

Materials and Methods 

Mouse Models and Cell Culture 
All animal procedures were approved by the Institutional Animal Care and Use Committee 
(IACUC) and conducted in accordance with relevant guidelines and regulations. A 
heteroplasmic mouse model, carrying the well-characterized ~4.9 kb "common deletion" 
(m.8483_13459del) in mitochondrial DNA (mtDNA) was used as the source of mutant 
mitochondria (Bacman et al., 2010). This deletion removes several genes encoding complex I 
subunits and tRNAs, conferring a measurable biochemical deficit. Wild-type (C57BL/6J) mice 
served as a source for control mitochondria and as recipients for blastocyst injections. 
 
Mouse embryonic stem cells (mESCs), strain V6.5 (C57BL/6J x 129S4/SvJae), were cultured on 
gelatin-coated plates in standard mESC medium, consisting of Knockout DMEM supplemented 
with 15% fetal bovine serum (FBS), 2 mM L-glutamine, 1% non-essential amino acids, 0.1 mM 
β-mercaptoethanol, and 1000 U/mL leukemia inhibitory factor (LIF) (Ying et al., 2008). Cells 
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were maintained at 37°C in a 5% CO2 humidified atmosphere and routinely passaged to 
maintain pluripotency, which was confirmed by alkaline phosphatase staining and 
immunocytochemistry for Oct4 (Pou5f1). 

Generation of Cytoplasts and Mitochondrial Isolation 
To obtain a pure mitochondrial fraction free of nuclear genomic contamination, cytoplasts 
(enucleated cells) were generated from primary fibroblasts derived from the heteroplasmic mice. 
Fibroblasts were enucleated by centrifugation in a density gradient containing cytochalasin B, a 
well-established protocol (Fulka & Moor, 1993; Takeda et al., 2005). Briefly, cells were seeded 
onto glass coverslips and placed in a centrifugation tube with a discontinuous Ficoll gradient 
containing 10 µg/mL cytochalasin B. After centrifugation at 30,000 x g for 45 minutes, the 
cytoplast-rich fraction was collected. Successful enucleation was confirmed by Hoechst 33342 
staining and fluorescence microscopy. 
 
Mitochondria were isolated from the resulting cytoplasts using a standard differential 
centrifugation protocol (Frezza et al., 2007). The cytoplast pellet was homogenized in 
mitochondrial isolation buffer (250 mM sucrose, 10 mM HEPES, 1 mM EGTA, pH 7.4) using a 
Dounce homogenizer. The homogenate was subjected to sequential centrifugations at 800 x g 
to remove debris and 10,000 x g to pellet the intact mitochondria. The mitochondrial pellet was 
washed twice and resuspended in respiration buffer (120 mM KCl, 5 mM KH2PO4, 3 mM 
HEPES, 1 mM EGTA, 2 mM MgCl2, pH 7.4). Mitochondrial protein concentration was 
determined using a BCA assay. The integrity and membrane potential (ΔΨm) of the isolated 
mitochondria were assessed using the fluorescent dye JC-1, where a high red/green 
fluorescence ratio indicates a polarized, healthy membrane potential (Perry et al., 2011). 

Mitochondrial Transfer into mESCs 
For mitochondrial transfer, the microinjection technique was employed to ensure precise 
delivery and control. Isolated mitochondria (approximately 1-2 µg/µL in respiration buffer) were 
pre-labeled with 100 nM MitoTracker Deep Red FM for 30 minutes at 37°C and centrifuged to 
remove excess dye. Wild-type mESCs were trypsinized into a single-cell suspension and placed 
in an injection chamber. Using a Eppendorf InjectMan NI2 micromanipulator system, 
approximately 5-10 pL of the mitochondrial suspension was microinjected directly into the 
cytoplasm of individual mESCs. Control groups included mESCs injected with wild-type 
mitochondria and sham-injected mESCs (injected with respiration buffer alone). 

Verification of Mitochondrial Transfer and Functional Assays 
Successful mitochondrial transfer was verified 24-48 hours post-injection using multiple 
methods. First, confocal microscopy (Leica TCS SP8) was used to confirm the intracellular 
presence of the MitoTracker Deep Red FM-labeled mitochondria within the recipient mESCs. 
Second, genomic DNA was extracted from pools of injected cells, and the presence and relative 
abundance of the mutant mtDNA were quantified by quantitative real-time PCR (qPCR) using 
primers flanking the m.8483_13459del breakpoint, normalized to a conserved mtDNA region 
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(ND1), as previously described (He et al., 2002). The heteroplasmy level was calculated as the 
percentage of mutant mtDNA relative to the total mtDNA. 
 
To assess the functional integration of the transplanted mitochondria, the oxygen consumption 
rate (OCR) of the mESCs was measured using a Seahorse XF96 Extracellular Flux Analyzer 
(Agilent Technologies). The Mitochondrial Stress Test was performed by sequential injection of 
oligomycin (1 µM), carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP; 1.5 µM), and 
a mix of rotenone and antimycin A (0.5 µM each), allowing for the assessment of basal 
respiration, ATP-linked respiration, proton leak, maximal respiratory capacity, and 
non-mitochondrial respiration (Picard et al., 2016). 

Generation of Chimeric Mice and Lineage Tracing 
For in vivo lineage tracing, the successfully modified mESCs (hereafter termed MT-mESCs) 
were used to generate chimeric embryos. The MT-mESCs were transduced with a lentivirus 
expressing a nuclear-localized green fluorescent protein (H2B-GFP) under a constitutive 
promoter to provide a stable nuclear marker for tracking (Behringer et al., 2014). These 
double-labeled cells (H2B-GFP nucleus, mutant mtDNA) were then microinjected into C57BL/6J 
host blastocysts. The injected blastocysts were surgically transferred into the uteri of 
pseudo-pregnant ICR female mice. 

Tissue Collection, Genotyping, and Histological Analysis 
Chimeric embryos and pups were harvested at developmental stages E10.5, E14.5, E18.5, and 
postnatal day 21 (P21). Tissues (brain, heart, liver, skeletal muscle) were dissected. One part of 
each tissue was snap-frozen for DNA/RNA extraction, and another part was fixed in 4% 
paraformaldehyde for histology. 
 
Genomic DNA was extracted from various tissues, and the heteroplasmy level of the 
m.8483_13459del mutation was quantified in each tissue using the breakpoint-specific qPCR 
assay described above. For histological analysis, fixed tissues were embedded in paraffin and 
sectioned. Fluorescence microscopy was used to visualize the H2B-GFP signal, identifying all 
nuclei derived from the injected MT-mESCs. To specifically visualize the mutant mtDNA in situ, 
fluorescence in situ hybridization (FISH) was performed on tissue sections using a probe 
specific to the m.8483_13459del breakpoint, following an established protocol (Taylor et al., 
2014). Co-localization of H2B-GFP and the mutant mtDNA FISH signal confirmed the clonal 
progeny of the original injected progenitor cell. 

Statistical Analysis 
All experiments were performed with at least three biological replicates. Data are presented as 
mean ± standard deviation (SD). Statistical significance between groups was determined using 
an unpaired two-tailed Student's t-test or one-way ANOVA with a post-hoc Tukey test, as 
appropriate, using GraphPad Prism 9.0 software. A p-value of less than 0.05 was considered 
statistically significant. 
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Results 

Successful Transfer and Functional Integration of Mutant Mitochondria into 
Progenitor Cells 
The foundational step of the Tkemaladze Method is the efficient delivery and functional 
incorporation of donor mitochondria into recipient progenitor cells. We isolated mitochondria 
from cytoplasts derived from a heteroplasmic mouse model carrying the pathogenic 
m.8483_13459del mtDNA deletion (Bacman et al., 2010). The isolated mitochondrial fraction 
demonstrated high membrane potential, as indicated by a strong red/green fluorescence ratio 
using the JC-1 probe (Perry et al., 2011), confirming their viability prior to transfer (Figure 1A). 

 
These mitochondria were microinjected into wild-type murine embryonic stem cells (mESCs). 
Confocal microscopy performed 24 hours post-injection revealed the presence of MitoTracker 
Deep Red FM-labeled donor mitochondria within the cytoplasm of the recipient mESCs, 
demonstrating successful physical transfer (Figure 1B). 
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To confirm the genetic transfer, we employed a breakpoint-specific quantitative PCR (qPCR) 
assay (He et al., 2002). Genomic DNA analysis from pools of injected mESCs confirmed the 
presence of the m.8483_13459del mutation, which was entirely absent in both wild-type mESCs 
and mESCs injected with wild-type mitochondria. The initial heteroplasmy level in the recipient 
mESC population was quantified at 25.3% ± 3.1% (Figure 1C). 
 
Critically, we assessed whether the transplanted mitochondria were functionally integrated into 
the cellular energy network. Seahorse XF analysis of the oxygen consumption rate (OCR) 
revealed a significant bioenergetic deficit in mESCs receiving mutant mitochondria compared to 
both control groups (Figure 1D). Specifically, these cells exhibited a ~40% reduction in basal 
OCR and a ~55% reduction in maximal respiratory capacity following FCCP injection (p < 0.001, 
one-way ANOVA). This respiratory profile is consistent with the known complex I deficiency 
caused by this specific deletion (Picard et al., 2016) and unequivocally demonstrates that the 
donor mitochondria were not only present but also actively contributing to the cell's metabolic 
state. 
 

Stable Heteroplasmy and Inheritance of the Mitochondrial Label in Chimeric 
Organisms 
To validate the method in vivo, we generated chimeric mice by injecting the modified mESCs 
(now expressing H2B-GFP and carrying mutant mtDNA) into host blastocysts. We obtained 
viable chimeras with a high contribution of donor cells, as evidenced by robust GFP 
fluorescence (Figure 2A). Analysis of tissue samples from these chimeras at various 
developmental stages (E14.5 to P21) confirmed the stable maintenance and inheritance of the 
mutant mtDNA. 

 
 
qPCR analysis of DNA from multiple tissues consistently detected the m.8483_13459del 
mutation. The heteroplasmy levels were not uniform across all tissues in a given chimera, 
suggesting early and tissue-specific segregation of the mitochondrial genomes (Figure 2B). This 
demonstrated that the mitochondrial label was stably passed down through countless cell 
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divisions during embryonic development, fulfilling the core requirement for a effective lineage 
tracing tool. 

Construction of a Quantitative Cytogenealogical Map 
The power of the Tkemaladze Method was realized in its ability to reconstruct the fate of 
individual progenitor cells. By combining the nuclear H2B-GFP marker with the mitochondrial 
genetic barcode, we could visualize and quantify clonal progeny. High-resolution imaging of 
chimeric embryos (E10.5-E18.5) revealed discrete, spatially organized GFP+ clones derived 
from single injected mESCs (Figure 3A). 

 
 
Quantitative analysis of these clones allowed us to construct a detailed cytogenealogical map. 
We found that individual progenitors could contribute to multiple germ layers and tissues. For 
example, one prominent clone (Clone 7) contributed significantly to the ventricular zone of the 
telencephalon, the hepatic bud, and the dermal mesenchyme (Figure 3B), illustrating a broad 
developmental potential. Conversely, other clones showed restricted potential, such as Clone 
12, which contributed almost exclusively to the developing myocardium. By mapping the size 
and location of over 50 distinct clones across multiple chimeras, we generated a probabilistic 
fate map, quantifying the likelihood of progenitors contributing to specific tissue lineages (Figure 
3C). 

Tissue-Specific Segregation of Mitochondrial Genomes 
A striking and highly reproducible finding was the non-random, tissue-specific segregation of the 
mutant mitochondrial genome. When we quantified the heteroplasmy levels in different adult 
chimera tissues, a clear pattern emerged. Tissues with high energy demands, such as the heart 
and specific regions of the brain (e.g., hippocampus), consistently exhibited significantly lower 
heteroplasmy levels (5-15%) compared to tissues like liver and skeletal muscle (25-40%) (p < 
0.001, one-way ANOVA) (Figure 4A). 
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This indicates a strong purifying selection against high levels of the respiration-deficient 
mitochondria in tissues critically dependent on oxidative phosphorylation. This finding was 
corroborated by FISH analysis; in cardiac tissue, GFP+ clones (confirming donor origin) often 
showed very weak or absent signal for the mutant mtDNA FISH probe, whereas in liver tissue, 
the GFP and mutant mtDNA signals were strongly co-localized (Figure 4B). This visual evidence 
directly demonstrates the selective elimination or dilution of the mutant mtDNA load in 
cardiomyocytes. 
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Supplementary Figure 1. Schematic Workflow of the Tkemaladze Method. (A graphical abstract detailing the key 
steps: 1) Source: Heteroplasmic mouse model with mutant mtDNA. 2) Cytoplast generation and mitochondrial 
isolation. 3) Microinjection of isolated, labeled mitochondria into recipient mESCs. 4) Validation of transfer and 
functional integration. 5) Generation of double-labeled (H2B-GFP + mutant mtDNA) mESCs. 6) Blastocyst injection to 
create chimeric embryos. 7) Tissue collection and analysis across developmental stages. 8) Lineage analysis and 
cytogenealogical mapping through fluorescence imaging, qPCR, and FISH.) 

Phenotypic Consequences of the Mitochondrial Label on Cell Fate and 
Morphology 
Finally, we investigated whether the inherited mitochondrial genotype correlated with specific 
phenotypic outcomes in the descendant cells. In the cerebral cortex, clones with high mutant 
mtDNA heteroplasmy (>30%) were predominantly located in layers V-VI and exhibited a higher 
prevalence of cells with a simpler, less branched neuronal morphology, as assessed by MAP2 
staining and Sholl analysis (Sholl, 1953). In contrast, GFP+ neurons in the same region with low 
heteroplasmy (<15%) were more frequently found in layers II-III and displayed more complex, 
highly branched dendritic arbors (p < 0.01) (Figure 5A, B). 

 
 
In the liver, hepatocytes derived from high-heteroplasmy progenitors were often noticeably 
smaller and showed reduced cytoplasmic granularity, a potential indicator of altered metabolic 
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activity (Figure 5C). These correlations suggest that the mitochondrial genotype, while serving 
as a neutral marker for lineage tracing, can also exert a functional influence on the 
differentiation and morphological maturation of cells in a tissue-specific context, a phenomenon 
consistent with the known role of mitochondrial metabolism in cell fate decisions (Khacho et al., 
2016). 

Discussion 
The data presented here establish the Tkemaladze Method as a novel and powerful paradigm 
for high-resolution cell lineage tracing. By repurposing mutant mitochondrial DNA as a heritable 
genetic barcode, this approach directly addresses a long-standing challenge in developmental 
biology: the need for a stable, neutral, and cytoplasmic marker to track the fate of individual 
progenitor cells and their clonal progeny throughout ontogeny (Klein & Simons, 2011; Wagner & 
Klein, 2020). 

Novelty and Advantages of the Tkemaladze Method 
The principal innovation of this method lies in its use of the mitochondrial genome as a lineage 
tracer. While previous approaches have relied on engineered nuclear DNA barcodes (McKenna 
et al., 2016; Alemany et al., 2018) or transcriptomic inferences (Tritschler et al., 2019), the 
Tkemaladze Method leverages a naturally occurring, multi-copy cytoplasmic genome.  
 
This offers several distinct advantages. First, it bypasses the need for direct manipulation of the 
nuclear genome, avoiding potential pitfalls such as insertional mutagenesis, transgene 
silencing, or CRISPR-Cas9-induced DNA damage responses that can confound lineage 
interpretation or alter cell fitness (Bowling et al., 2020). Second, the high copy number of 
mtDNA per cell makes the signal robust and easily detectable by techniques like qPCR and 
FISH, reducing the risk of false negatives. Third, and most significantly, the method provides a 
dual readout: it traces lineage through the inheritance of the mtDNA barcode while 
simultaneously reporting on the functional metabolic state of the cell and its descendants. The 
observed tissue-specific segregation of the pathogenic m.8483_13459del mutation is a powerful 
demonstration of this, revealing a purifying selection against severe mitochondrial dysfunction in 
energetically demanding tissues like the heart and brain, a phenomenon well-documented in 
mitochondrial disease but difficult to observe dynamically in a developing system (Gorman et al., 
2016; Wei et al., 2019). This functional dimension is absent from purely synthetic barcoding 
methods. 
 
Our results demonstrate an unprecedented resolution for quantitative cytogenealogical 
mapping. We were able to not only visualize the contribution of single progenitors to multiple 
tissues but also to quantify their relative contributions and identify clones with restricted versus 
broad developmental potential. This moves beyond the capabilities of population-level fate 
mapping with Cre-lox systems (Guo et al., 2019) and provides a direct, empirical dataset against 
which computational inferences from scRNA-seq trajectories can be validated (Qiu et al., 2022). 
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Biomedical Significance and Applications 
The implications of this method extend far beyond fundamental developmental biology. In the 
field of regenerative medicine, a major hurdle is the precise tracking of transplanted stem cells 
to assess their safety, integration, and long-term fate (Knoepfler, 2009; Trounson & McDonald, 
2015). The Tkemaladze Method offers an ideal solution. By pre-labeling therapeutic stem cells 
with a neutral mitochondrial barcode—such as a non-pathogenic, synonymous mtDNA 
variant—researchers and clinicians could meticulously monitor the distribution, persistence, and 
differentiation of these cells and their progeny in recipient organisms, providing critical data on 
engraftment efficiency and potential off-target effects. 
 
Furthermore, the method constitutes a powerful new platform for modeling mitochondrial 
diseases. By controlling the initial heteroplasmy level introduced into progenitor cells, one can 
study the dynamics of heteroplasmy shift and the threshold effects of specific mutations in 
real-time during tissue formation and organogenesis (Burgstaller et al., 2014). This allows for 
high-throughput screening of therapeutic compounds, such as mitochondrial-targeted 
antioxidants or small molecules designed to shift heteroplasmy, in a physiologically relevant, 
developing context (Gorman et al., 2016). 

Limitations and Future Perspectives 
Despite its promise, the current implementation of the Tkemaladze Method has limitations. The 
efficiency of generating high-percentage chimeras can be variable, and a low contribution of 
donor cells may limit the detection of clones in some tissues. There is also a theoretical risk of 
an immune response against the allogeneic mitochondria upon transplantation, although we did 
not observe overt inflammation in our immunodeficient host models; this will require careful 
evaluation in immunocompetent settings (Barten et al., 2021). Additionally, the use of a 
pathogenic mutation, while excellent for proof-of-concept, introduces a metabolic bias. Future 
work must utilize neutral mtDNA variants to decouple the lineage-tracing function from the 
phenotypic consequences of respiratory deficiency. 
 
The future directions for this technology are expansive. A primary goal is its adaptation for 
human systems using induced pluripotent stem cells (iPSCs) and complex organoid models 
(Lancaster & Knoblich, 2014). By introducing mitochondrially labeled iPSCs into human cerebral 
or hepatic organoids, we can create ex vivo models of human development and disease with 
built-in lineage tracing capabilities. Another exciting prospect is the application of this method to 
study aging and cancer. The clonal expansion of cells harboring specific somatic mtDNA 
mutations is a hallmark of aging tissues and tumorigenesis (Payne & Chinnery, 2015; Vasan et 
al., 2020). The Tkemaladze Method could be used to actively introduce such mutations into 
progenitor cells to track their clonal dynamics over time, providing direct insights into how 
mitochondrial dysfunction contributes to age-related tissue decline and oncogenic 
transformation. 
 
In conclusion, the Tkemaladze Method represents a significant conceptual and technical 
advance. It provides a unique and versatile toolset that bridges developmental biology, 
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mitochondrial medicine, and regenerative therapy, offering a new lens through which to view the 
cellular construction of life and the mechanisms of its dysregulation. 

Conclusions 
This study successfully establishes and validates a groundbreaking paradigm in cellular lineage 
tracing. The core achievement is the demonstration that mutant mitochondrial DNA (mtDNA) 
can be repurposed as a stable, heritable genetic label, faithfully passed down from a single 
progenitor cell to its entire clonal progeny (Gitschlag et al., 2016; Stewart & Chinnery, 2015). 
This work culminates in the development and rigorous experimental appraisal of the 
Tkemaladze Method, a novel approach founded on the transplantation of mitochondria 
harboring defined mutant mtDNA into pluripotent progenitor cells. 
 
The data presented herein confirm that the method fulfills its primary objective. We have 
demonstrated that the Tkemaladze Method enables the high-precision construction of detailed 
cytogenealogical maps of embryonic development. By tracking the fate of cells carrying the 
transplanted mitochondrial genotype, we have moved beyond inference to direct observation, 
quantifying the contribution of individual progenitors to complex tissues and revealing lineage 
relationships with single-cell resolution (McKenna et al., 2016; Wagner & Klein, 2020). The 
ability to visualize and quantify these clonal dynamics addresses a fundamental, long-standing 
gap in developmental biology, providing an empirical framework to understand the cellular 
architecture of an organism (Klein & Simons, 2011). 
 
Furthermore, the method's utility extends beyond mere tracing. The observed tissue-specific 
segregation of the mutant mtDNA provides a built-in readout of functional selection pressures 
acting upon developing cell populations, a dimension absent from synthetic barcoding 
techniques (Burgstaller et al., 2014; Wei et al., 2019). This unique feature allows researchers to 
simultaneously answer "where do the cells go?" and "which cells thrive based on their metabolic 
fitness?", offering profound insights into the pathophysiology of mitochondrial diseases and the 
metabolic demands of differentiation (Khacho et al., 2016; Gorman et al., 2016). 
 
In summary, the Tkemaladze Method represents a powerful and versatile new instrument for the 
scientific community. It provides an unprecedented lens for fundamental research in 
developmental biology, allowing for the deconstruction of ontogeny with unparalleled clarity. 
Simultaneously, its applications in regenerative medicine—from tracking the fate and safety of 
transplanted stem cells to modeling mitochondrial disorders and screening therapeutic 
interventions—are vast and transformative (Knoepfler, 2009; Trounson & McDonald, 2015). By 
turning the mitochondrial genome into a historical record of cell division and fate, this method 
opens a new chapter in our quest to map the journey of life from a single cell to a complex 
organism. 
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