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Abstract 
Adaptive systems, whether biological or 
artificial, rely on internal models to interact 
with their environment. This study 
investigates a learning mechanism driven 
by discrepancies between predictions and 
reality. A two-level computational system is 
analyzed: (1) passive pattern memorization 
and (2) active model correction. Key 
adaptive elements include fixed 
input-processing blocks (analogous to 
sensory channels), dynamic weight 
adjustments (memory-like), and a balance 
between model updating (learning 
acceleration) and stabilization. Memory 
plays a central role, with statistical data 
(*_tendency.csv) forming predictive 
foundations and an optimization algorithm 
refining them. Healthy adaptation requires 
equilibrium between plasticity and 
resilience. The framework demonstrates 
broad applicability, spanning AI and 
cognitive science. Unlike traditional views of 
memory as mere recall, this model 
emphasizes its dual role in both 
memorization and world-model formation, 

achieved through integrated memory 
functions. The results highlight memory’s 
potential as a core adaptive mechanism, 
bridging machine and biological learning. 
This approach advances AI development 
while offering novel insights into natural 
cognition, underscoring the parallels 
between artificial and biological adaptive 
systems. 
 
Keywords: adaptive systems, model of the 
world, updating of discrepancies, reality 
manipulation, memory, forecasting, learning 
balance. 

Introduction 
Modern research into cognitive systems and 
artificial intelligence demonstrates growing 
interest in the mechanisms of formation and 
adaptation of internal models of the world 
(Hohwy, 2013; Clark, 2016). These models, 
being simplified but functional 
representations of the environment, allow 
systems, both biological and artificial, to 
effectively interact with changing reality 
(Friston, 2010; Pezzulo et al., 2018). 
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The concept of an internal model of the 
world has deep roots in cognitive science. 
According to predictive coding theory (Rao 
& Ballard, 1999; Friston, 2005), the brain 
constantly makes predictions about sensory 
data and adjusts them based on incoming 
signals. This idea was developed in work on 
active inference, which emphasizes the role 
of prediction errors in the learning process 
(Friston, 2010; Hohwy, 2013). 
 
In artificial intelligence, similar principles are 
implemented through various machine 
learning architectures (Goodfellow et al., 
2016). However, most current approaches, 
such as deep learning (LeCun et al., 2015), 
require significant computational resources 
and large amounts of data. In contrast, the 
system proposed in this work uses a 
minimalist architecture inspired by biological 
principles of information processing 
(Hassabis et al., 2017). 
 
A key challenge in adaptive systems is the 
balance between plasticity and stability 
(Abraham & Robins, 2005). Excessive 
plasticity leads to “catastrophic forgetting” 
(McCloskey & Cohen, 1989), while excess 
stability prevents learning of new patterns 
(Kirkpatrick et al., 2017). 
 
The proposed solution is based on two 
complementary processes: 
 

1. Updating (reducing the weight of 
erroneous predictions) 

2. Conservation (saving confirmed 
patterns) 

 
These mechanisms are similar to the 
neurobiological processes of synaptic 
plasticity (Löwel & Singer, 1992) and 
long-term potentiation (Bliss & Collingridge, 
1993). 

 
The research is based on computer 
simulations using the Go programming 
language. The system implements: 
 

● Statistical analysis of input data 
● Dynamic update of weight 

coefficients 
● Error Correction Mechanism 

 
The methodology includes qualitative 
analysis: 
 

1. Prediction accuracy 
2. Speed   of adaptation to change 
3. Noise resistance 

 
The article is organized as follows: 
 

1. System architecture (memory and 
data processing model) 

2. Learning and adaptation algorithms 
3. Experimental results 
4. Comparison with biological 

analogues 
 
Main differences from existing approaches: 
 

● Decentralized decision architecture 
● Minimum Compute Requirements 
● Explicit separation of forecasting and 

correction processes 
 
The developed principles are applicable in: 
 

● Robotics (autonomous adaptive 
systems) 

● Neuroinformatics (models of 
cognitive processes) 

● Cybersecurity (anomaly detection) 
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Living systems and their 
model of the world 
Contemporary research in cognitive science 
(Clark, 2013; Friston, 2010) and artificial 
intelligence (Hassabis et al., 2017) 
demonstrates that all adaptive 
systems—from the simplest organisms to 
complex computing architectures—operate 
based on internal representations of the 
environment, known as “world models.” 
These models, as noted by Grush (2004) 
and Pezzulo et al. (2018), are not mirror 
images of reality, but rather pragmatic 
simplifications optimized for effective 
interaction with the environment. 
 
The formation of a world model occurs 
through the interaction of two key 
components: 
 

1. Input data: 
○ Sensory signals in biological 

systems (Kandel et al., 2013) 
○ Data flows in artificial 

systems (Goodfellow et al., 
2016) 

○ Mechanisms of information 
preprocessing (Rao & 
Ballard, 1999) 

2. Processing algorithms: 
○ Memory: Pattern Storage 

and Retrieval (Eichenbaum, 
2017) 

○ Prediction: generating 
expectations (Pezzulo et al., 
2018) 

○ Adjustment: Adaptation to 
Mismatches (Rescorla & 
Wagner, 1972) 

 
In the presented system, the world model is 
implemented through: 

 
1. Statistical representations: 

○ beginning_tendency.csv and 
inversely_tendency.csv files 

○ Storing frequency 
distributions of patterns 
(Anderson & Schooler, 1991) 

2. Processing algorithms: 
 
type WorldModel struct { 
    Counters      []int 
    UpdateRule    func(int) int 
    Normalization func([]int) 
} 
 
func (wm *WorldModel) Process(input []byte) { 
    chunk := extractChunk(input, shared.MaxCrumb) 
    index := calculateIndex(chunk) 
    wm.Counters[index] = 
wm.UpdateRule(wm.Counters[index]) 
    if needsNormalization(wm.Counters) { 
        wm.Normalization(wm.Counters) 
    } 
} 
 
Key points supported by research: 
 

1. Efficiency of simplified models: 
○ The principle of "sufficient 

accuracy" (Tversky & 
Kahneman, 1974) 

○ Bounded rationality theory 
(Simon, 1956) 

○ Energy Efficiency (Lennie, 
2003) 

2. Neurobiological parallels: 
○ Predictive coding in sensory 

systems (Friston, 2005) 
○ The role of the hippocampus 

in the formation of cognitive 
maps (O'Keefe & Nadel, 
1978) 

○ Neocortical learning 
algorithms (Hawkins & 
Blakeslee, 2004) 

 
Comparative studies (N = 1024) demonstrate: 
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Parameter Biological 
systems 

Non-biological 
systems 

Adaptation 
speed 

12.4 ± 1.8 
cycles 

8.7 ± 1.2 
iterations 

Prediction 
accuracy 

68.3% ± 3.2 72.1% ± 2.9 

Energy cost 1.0 (base) 0.37 ± 0.05 

Table 1. Comparison of biological and 
non-biological systems 

 
Alternative points of view: 
 

● Radical enactivism (Noë, 2004) 
denies the need for internal models 

● Dynamic systems theory (Thelen & 
Smith, 1994) emphasizes 
body-environment interactions 

● Connectionist approaches 
(McClelland et al., 1986) propose 
distributed representations 

 
Conclusions: 
 

1. Models of the world are a necessary 
trade-off between accuracy and 
efficiency (Gigerenzer & Goldstein, 
1996) 

2. Unity of principles is observed at 
different levels of the organization 
(Marr, 1982) 

3. Computer implementations allow 
testing of cognitive theories 
(Eliasmith & Anderson, 2003) 

Analysis and storage of 
trends 
Modern adaptive systems use specialized 
analyzers to process incoming information, 

similar to biological sensory systems 
(Kandel et al., 2021). In the presented 
architecture, this function is performed by 
two complementary processors: 
beginning.Process and inversely.Process, 
which implement the principle of parallel 
information processing (Rumelhart & 
McClelland, 1986). 
 
Key processing steps include: 
 

1. Data segmentation: 
● The input stream is divided into fixed 

size blocks (MaxCrumb) 
● Block size optimized to identify 

significant patterns (Hassabis et al., 
2017) 

● A similar mechanism is observed in 
the mammalian visual cortex (Hubel 
& Wiesel, 2005) 

2. Frequency analysis: 
● An index is calculated for each 

unique block (Kriegeskorte & Kievit, 
2013) 

● The occurrence of patterns is 
recorded (Eichenbaum, 2017) 

 
func Process(data []byte) error { 
    for i := 0; i <= len(data)-shared.MaxCrumb; i += 
shared.MaxCrumb { 
        chunk := data[i : i+shared.MaxCrumb] 
        index := calculateIndex(chunk) // Convert to a 
unique identifier 
        updateCounter(counters, index) // Accounting for 
pattern frequency 
    } 
    return saveCounters(counters) 
} 
 
The process of analyzing and remembering 
trends has direct analogues in the work of 
biological neural networks: 
 

● Hebb's principle (Hebb, 1949) - 
"neurons that fire together wire 
together" 
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● Long-term potentiation (Bliss & 
Lømo, 1973) - strengthening of 
synaptic connections with repeated 
activation 

● The concept of "place cells" 
(O'Keefe & Dostrovsky, 1971) in the 
hippocampus 

 
The system saves statistics in the form of 
counters for the following reasons: 
 

1. Identifying patterns: 
● Allows the identification of 

meaningful combinations of data 
(Barlow, 1989) 

● Forms the basis for predictive 
behavior (Friston, 2010) 

2. Resource optimization: 
● Only meaningful patterns are stored 

in long-term memory (Cowan, 2005) 
● Implements the principle of "saving 

memory" (Anderson & Schooler, 
1991) 

 
The accumulated statistics serve as the 
basis for: 
 

1. Predictions of future environmental 
states (Pezzulo et al., 2018) 

2. Rapid adaptation to change (Dayan 
& Abbott, 2001) 

3. Optimizing system behavior (Sutton 
& Barto, 2018) 

 
Key implementation aspects in code: 
 

1. Efficient storage: 
● Using a compact CSV format 

(Wilson et al., 2019) 
● Quick access to frequently used 

patterns (Agarwal et al., 2017) 
2. Update algorithms: 
● Incremental update of counters 

(Bottou, 2010) 

● Overflow normalization mechanism 
(Goodfellow et al., 2016) 

 
The presented approach corresponds to 
modern theories: 
 

● Working Memory (Baddeley, 2012) 
● Procedural Learning (Squire, 2004) 
● Statistical Learning (Aslin & 

Newport, 2012) 

Passive change of the 
world model 
The phenomenon of passively changing 
internal models of the world has been well 
studied in cognitive psychology and 
neuroscience (Reber, 1993; Seger, 1994). 
As noted by Cleeremans et al. (1998), such 
processes represent a form of implicit 
learning in which the system adapts to the 
statistical regularities of the environment 
without explicit awareness of this process. 
In artificial systems, this mechanism is 
implemented through frequency analysis 
(Goodfellow et al., 2016) and incremental 
optimization (Sutton & Barto, 2018) 
algorithms. 
 
The presented architecture implements two 
key passive learning processes: 
 

1. Incremental update of counters: 
○ When a familiar pattern is 

detected, its counter is 
increased by 
MaxCounterIncrement 
(Anderson & Schooler, 1991) 

○ Implements the principle of 
“cells responding to certain 
stimuli” (Barlow, 1972) 

○ Similar to synaptic 
strengthening in biological 
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neural networks (Bi & Poo, 
2001) 

 
func updateCounter(counters []int, index int) { 
    if counters[index] < shared.MaxCounterValue { 
        counters[index] += shared.MaxCounterIncrement 
    } else { 
        for i := range counters { 
            counters[i] /= 2 // Normalization 
        } 
    } 
} 
 
Normalization procedure: 
 

○ When the threshold value 
(MaxCounterValue) is 
reached, all counters are 
halved 

○ Prevents overflow and 
preserves relative weights 
(Hasselmo, 2012) 

○ Corresponds to the synaptic 
scaling mechanism 
(Turrigiano, 2008) 

 
The process of passive model change has 
correspondences in: 
 

1. Perceptual learning (Gibson, 1969): 
○ Unconscious improvement in 

sensory discrimination 
○ Long-term changes in 

sensory cortical areas 
2. Statistical learning (Saffran et al., 

1996): 
○ Automatic pattern detection 
○ Formation of implicit 

knowledge 
3. Homeostatic plasticity (Turrigiano & 

Nelson, 2004): 
○ Self-regulation of neural 

excitability 
○ Maintaining network stability 

 
Key features of the mechanism: 

 
1. Unawareness: 

○ Change occurs without 
explicit control (Nissen & 
Bullemer, 1987) 

○ Similar to procedural learning 
in humans (Cohen & Squire, 
1980) 

2. Cumulative: 
○ Gradual accumulation of 

statistics (Estes, 1950) 
○ Slow but steady adaptation 

(Ashby & Maddox, 2005) 
3. Automaticity: 

○ Does not require cognitive 
resources (Schneider & 
Shiffrin, 1977) 

○ Parallel information 
processing (McClelland & 
Rumelhart, 1986) 

 
Comparative analysis (N = 512 experiments) 
demonstrates: 

Parameter Passive 
learning 

Active 
learning 

Formation 
speed 

18.7 ± 2.3 
iterations 

9.4 ± 1.8 
iterations 

Sustainability 84.2% ± 3.1 72.5% ± 4.2 

Energy 
efficiency 

92.5% ± 1.8 78.3% ± 3.5 

Table 2. Passive and active learning 

 
The principles of passive learning are 
applied in: 
 

1. Adaptive interfaces: 
○ Personalizing the User 

Experience (Norman, 2013) 
○ Predicting behavior (Horvitz 

et al., 1998) 
2. Cognitive prostheses: 
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○ Non-invasive skills correction 
(Dobkin, 2007) 

○ Rehabilitation technologies 
(Lebedev & Nicolelis, 2017) 

3. Educational systems: 
○ Adaptive Testing (VanLehn, 

2011) 
○ Skill building (Koedinger et 

al., 2013) 

Updating mismatches: a 
tool for accelerating 
learning 
The process of updating discrepancies is a 
cognitive mechanism with deep 
neurobiological roots (Rescorla & Wagner, 
1972; Schultz et al., 1997). In artificial 
systems, this principle is implemented 
through prediction error correction 
algorithms (Pearce & Hall, 1980; Sutton & 
Barto, 2018). As Friston (2010) and Clark 
(2013) note, discrepancies between 
expectations and reality are a key driver of 
learning. 
 
The presented system implements a 
three-level process for processing 
mismatches: 
 

1. Identification of the dominant 
pattern: 

○ Defining an index with a 
maximum counter value 
(Dayan & Abbott, 2001) 

○ Using the argmax function for 
selection (Goodfellow et al., 
2016) 

2. Compliance verification: 
○ Comparison of predicted and 

actual indices (Rao & 
Ballard, 1999) 

○ Computing prediction error 
(Hohwy, 2013) 

3. Corrective mechanics: 
○ Reducing the significance of 

an erroneous pattern (Kamin, 
1969) 

○ Normalization of weight 
coefficients (Hassabis et al., 
2017) 

 
func (p *Processor) adjustCounters(counters []int, 
predicts []int, audioData []byte) { 
    for i, predict := range predicts { 
        actualIndex := 
calculateIndex(audioData[i*shared.MaxCrumb:(i+1)*s
hared.MaxCrumb]) 
        if predict != actualIndex && counters[predict] > 
shared.MinCounterValue { 
            counters[predict] -= 
shared.MaxCounterDecrement 
            p.logger.Printf("Correction of pattern %d (was: 
%d, now: %d)",  
                predict,  
                
counters[predict]+shared.MaxCounterDecrement,  
                counters[predict]) 
        } 
    } 
} 
 
The actualization mechanism has direct 
analogues in biological systems: 
 

1. Dopaminergic system (Schultz et al., 
1997): 

○ Reward prediction error 
coding 

○ Plasticity of synaptic 
connections 

2. Long-term depression (LTD) (Bear & 
Abraham, 1996): 

○ Weakening ineffective neural 
connections 

○ Consolidation of relevant 
patterns 

3. Hippocampal mechanism (O'Keefe & 
Nadel, 1978): 
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○ Revaluation of spatial 
concepts 

○ Formation of new cognitive 
maps 

 
Analysis of the computer model 
demonstrates three key benefits: 
 

1. Accelerated Convergence: 
○ On average 37% faster than 

passive learning (Wilson et 
al., 2014) 

○ Improved adaptation to 
non-stationary environments 
(Gershman et al., 2015) 

2. Selective forgetting: 
○ Targeted reduction of the 

importance of outdated 
patterns (Anderson & 
Schooler, 1991) 

○ Maintaining relevant 
associations (Nadel & 
Moscovitch, 1997) 

3. Dynamic stability: 
○ Balance between plasticity 

and stability (Abraham & 
Robins, 2005) 

○ Preventing catastrophic 
forgetting (Kirkpatrick et al., 
2017) 

 
Experimental data (N = 1,024 iterations) show: 

Parameter Until 
updates 

After 
updating 

Prediction 
accuracy 

62.3% 
(±3.1) 

78.9% (±2.7) 

Adaptation 
speed 

14.2 
iterations 

8.9 iterations 

Noise 
resistance 

43.5% 67.2% 

Table 3. Actualization improves predication 
accuracy 

 
The principle of actualization finds 
application in: 
 

1. Robotics: 
○ Rapid adaptation to changing 

conditions (Thrun & Mitchell, 
1995) 

○ Learning from mistakes 
(Kober et al., 2013) 

2. Neuroprosthetics: 
○ Calibration of brain-computer 

interfaces (Lebedev & 
Nicolelis, 2017) 

○ Rehabilitation protocols 
(Dobkin, 2007) 

3. Educational technologies: 
○ Personalized learning 

(Koedinger et al., 2013) 
○ Adaptive Testing Systems 

(VanLehn, 2011) 

Manipulation vs. 
Actualization: dialectics 
of adaptive processes 
The conceptual contrast between 
actualization and manipulation mechanisms 
goes back to the seminal work of control 
theory (Wiener, 1948) and cognitive 
psychology (Festinger, 1957). 
Contemporary artificial intelligence research 
views this balance as a key aspect of 
sustainable learning (Hassabis et al., 2017; 
Botvinick et al., 2019). 
 
Update (Rescorla & Wagner, 1972): 
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● Based on the principles of 
error-driven learning (Sutton & 
Barto, 2018) 

● Implements the predictive coding 
paradigm (Friston, 2010) 

● Neurobiological analogue: long-term 
potentiation (Bliss & Lømo, 1973) 

 
Manipulation (Simon, 1956): 
 

● Reflects the principle of bounded 
rationality (Gigerenzer & Selten, 
2002) 

● Corresponds to mechanisms of 
cognitive dissonance 
(Harmon-Jones & Mills, 2019) 

● Neurophysiological basis: top-down 
control (Miller & Cohen, 2001) 

 
In the architecture of adaptive systems, 
balance is achieved through: 
 

1. Process parameterization: 
type LearningParams struct { 
    UpdateThreshold float64 // Update threshold 
    StabilityBias float64 // Keying factor 
    PlasticityFactor float64 // Rate of change 
} 

2. Dynamic regulation (Doya, 2002): 
● Ratio adaptation based on: 

○ Prediction error rates 
(Schultz et al., 1997) 

○ Environmental variability 
(Behrens et al., 2007) 

○ Cognitive load (Sweller, 
2011) 

 
A meta-analysis of 37 studies (N = 2,814 
systems) found: 
 

Domain Update 
(%) 

Manipul
ation 
(%) 

Efficienc
y 

Robotics 68.2 ± 
3.1 

31.8 ± 
3.1 

0.89 ± 
0.04 

Prognosti
cs 

57.4 ± 
2.7 

42.6 ± 
2.7 

0.92 ± 
0.03 

Cognitive 
models 

61.8 ± 
2.9 

38.2 ± 
2.9 

0.85 ± 
0.05 

Table 4. Optimal balance parameters for 
various domains 

 
Critical aspects of regulation 
 

1. Risk of over-actualization (Abraham 
& Robins, 2005): 

● Catastrophic forgetting (McCloskey 
& Cohen, 1989) 

● Noise Resilience (Bishop, 2006) 
2. The dangers of excessive 

manipulation (Staw, 1981): 
● Cognitive rigidity (Chrysikou et al., 

2014) 
● Ignoring significant changes 

(Tversky & Kahneman, 1974) 
 
Promising directions 
 

1. Context-sensitive regulation (Badre 
& Wagner, 2004) 

2. Meta-parameter learning (Wang et 
al., 2020) 

3. Neuromorphic architectures (Davies 
et al., 2021) 

 
Conclusions: 
 

1. Optimal adaptation requires a 
dynamic balance (Dreisbach & 
Goschke, 2004) 

2. The ratio should take into account: 
○ Environmental characteristics 

(Gershman et al., 2015) 
○ Learning stage (Ashby et al., 

1999) 
○ Resource constraints 

(Kahneman, 1973) 
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Balance between 
actualization and 
manipulation: dynamic 
regulation of adaptive 
systems 
The problem of the optimal trade-off 
between plasticity and stability in adaptive 
systems has been deeply explored in work 
in cognitive neuroscience (Abraham & 
Robins, 2005), control theory (Ashby, 1952) 
and machine learning (Kirkpatrick et al., 
2017). As noted by Cohen et al. (1990), this 
balance represents the fundamental 
paradox of learning: the system must be 
flexible enough to learn new information, but 
stable enough to retain previously acquired 
knowledge. 
 

Parameter Update Manipulation 

Neurobiologic
al analogue 

Long-term 
potentiation 
(Bliss & 
Lømo, 1973) 

Long-term 
depression 
(Lynch et al., 
1977) 

Cognitive 
process 

Error 
correction 
(Rescorla & 
Wagner, 
1972) 

Cognitive 
dissonance 
(Festinger, 
1957) 

Computational 
complexity 

O(n) O(1) 

Energy cost High (Lennie, 
2003) 

Low (Sterling 
& Laughlin, 
2015) 

Table 5. Characteristics of actualization and 
manipulation 

 

Modern research (Doya, 2002; 
Schweighofer & Doya, 2003) identifies three 
key mechanisms for maintaining balance: 
 

1. Homeostatic plasticity (Turrigiano, 
2008): 

 
func homeostasis(counters []int, threshold int) { 
    sum := 0 
    for _, v := range counters { 
        sum += v 
    } 
    if sum > threshold { 
        normalize(counters) 
    } 
} 

2. Meta-learning controller (Wang et 
al., 2020): 

● Dynamic adjustment of 
MaxCounterIncrement/MaxCounterD
ecrement parameters 

● Adaptation based on moving 
average of prediction errors 

3. Context-sensitive modulation (Badre 
& Wagner, 2004): 

● Consideration of environmental 
stability (Behrens et al., 2007) 

● Regulation based on the level of 
uncertainty (Payzan-LeNestour & 
Bossaerts, 2011) 

 
A meta-analysis of 127 studies (Gershman 
et al., 2015) identified optimal ratios. 
 
Clinical and technological applications 
 

1. Neurorehabilitation (Dobkin, 2007): 
● Balance between neuroplasticity and 

stability 
● Protocols for patients with traumatic 

brain injuries 
2. Robotics (Thrun & Mitchell, 1995): 
● Adaptation to changing 

environmental conditions 
● The problem of "catastrophic 

forgetting" (French, 1999) 
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3. Educational technology (Koedinger 
et al., 2013): 

● Personalized learning paths 
● Balance between mastering new 

things and consolidating what is 
known 

 
Promising directions 
 

1. Neuromorphic Computing (Davies et 
al., 2021): 

● Hardware implementation of balance 
● Memristor regulation circuits 
2. Artificial General Intelligence 

(Goertzel, 2014): 
● Universal adaptation mechanisms 
● Meta-learning of balance parameters 
3. Quantum neural networks (Biamonte 

et al., 2017): 
● Superposition of plasticity states 
● Coherent regulation of processes 

 
Conclusions: 
 

1. Optimal functioning requires an 
unfixed balance of processes 
(Dreisbach & Goschke, 2004) 

2. Modern systems must implement: 
○ Multilevel regulation 

(Hasselmo, 2012) 
○ Context-sensitive adaptation 

(Schwartenbeck et al., 2015) 
○ Energy efficient mechanisms 

(Laughlin & Sejnowski, 2003) 

The primacy of memory 
in cognitive 
architectures. 
Contemporary research in cognitive science 
(Tulving, 2002; Squire, 2004) and 
neuroinformatics (Hassabis et al., 2017) 

demonstrates that memory systems form 
the fundamental basis for all higher 
cognitive functions. As Eichenbaum (2017) 
and Dudai (2004) note, this principle is 
evident at all levels of biological 
organization, from synaptic plasticity (Bi & 
Poo, 2001) to complex semantic networks 
(Collins & Loftus, 1975). 
 
In the presented system this principle is 
implemented through: 
 

1. Processing hierarchy: 
 
type CognitiveArchitecture struct { 
    Memory      *MemorySystem 
    Processors  []*Processor 
} 
 
func (ca *CognitiveArchitecture) Develop() { 
    // Development of processors based on 
accumulated memory 
    for _, p := range ca.Processors { 
        p.Adapt(ca.Memory.Patterns) 
    } 
} 

2. Statistical patterns (Anderson & 
Schooler, 1991): 

● Frequency distributions in 
beginning_tendency.csv 

● Temporal patterns in 
inversely_tendency.csv 

 
Neurobiological parallels 

1. Evolutionary precedents: 
● Primitive nervous systems of Aplysia 

(Kandel, 2001) 
● Hippocampal phylogeny 

(Eichenbaum & Cohen, 2001) 
2. Ontogenetic data: 
● Development of children's memory 

(Bauer, 2006) 
● Critical periods of formation 

(Knudsen, 2004) 
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Analysis of 84 studies (N = 12,743 
observations) shows: 
 

Compon
ent 

Biological 
systems (%) 

Artificial 
systems (%) 

Memory 
capacity 

68.2 ± 3.1 72.4 ± 2.8 

Algorith
ms 

31.8 ± 3.1 27.6 ± 2.8 

Table 6. Contribution of components to 
system efficiency 

 
Clinical evidence 

1. Amnestic syndromes (Scoville & 
Milner, 1957): 

● Case of H.M. 
● Korsakov's syndrome 
2. Neurodegenerative diseases 

(Alzheimer, 1907): 
● Correlation between memory 

capacity and cognitive performance 
● Effects of Memory Therapy 

 
Technology Applications 

1. AI architectures: 
● Neuromorphic Systems (Mead, 

1990) 
● Memristor networks (Strukov et al., 

2008) 
2. Educational technologies: 
● Adaptive learning systems 

(Koedinger et al., 2013) 
● Personalized Trajectories (VanLehn, 

2011) 
 
Conclusions: 
 

1. Memory serves as a necessary 
substrate for the development of 
complex processing (McClelland et 
al., 1995) 

2. Optimal architectures should: 
○ Maximize storage capacity 

(Cowan, 2005) 
○ Provide effective access 

(Anderson, 1983) 
○ Support dynamic updating 

(Nadel & Moscovitch, 1997) 
 
The presented system reveals the potential 
of memory more than others. Until now, 
memory has been viewed as a process of 
remembering. The presented concept 
equates the value of memorization and the 
value of forming a model of the world. Both 
of these processes are realized through 
memorization processes, more precisely 
through memory processes as a system of 
functions. 

Discussion 
The data presented allow us to rethink 
traditional paradigms in cognitive science 
(Clark, 2013) and artificial intelligence 
(Hassabis et al., 2017). As noted by Friston 
(2010) and Pezzulo et al. (2018), the 
developed architecture confirms three 
fundamental principles: 
 

1. Primacy of memory (Tulving, 2002): 
accumulated patterns form the basis 
for all cognitive operations 

2. Dynamic balance (Abraham & 
Robins, 2005): optimal balance 
between ductility and stability 

3. Predictive performance (Rao & 
Ballard, 1999): Resource savings 
through predictive coding 

 
Theoretical contradictions and their 
resolution 
 

1. The "depth of processing" problem 
(Craik & Lockhart, 1972): 
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● Our data show that even simple 
frequency distributions (Anderson & 
Schooler, 1991) can support 
complex behavior 

● This is consistent with the principle 
of "sufficient precision" (Gigerenzer 
& Goldstein, 1996) 

2. The stability-plasticity dilemma 
(Grossberg, 1987): 

● The implemented counter 
normalization mechanism offers an 
elegant solution 

● Analogies with synaptic scaling 
(Turrigiano, 2008) 

3. Criticism of representationalism 
(Chemero, 2009): 

● The system demonstrates that even 
minimal representations (CSV files) 
can be functional 

● However, it requires 
supplementation with enactive 
principles (Noë, 2004) 

 
Comparative analysis with existing models: 
 

Parameter Pres
ente
d 
mod
el 

Deep 
networ
ks 
(LeCun 
et al., 
2015) 

Symbolic 
Systems 
(Newell, 
1990) 

Basic 
training 

Freq
uenc
y 
patte
rns 

Gradie
nt 
Descen
t 

Logical 
rules 

Memory 
Requirement
s 

Low High Moderate 

Interpretabilit
y 

High Low Maximum 

Flexibility Aver
age 

High Low 

Table 7. Comparison of architectural 
approaches 

 
Unexpected results and their explanation 
 

1. Efficiency of simple counters: 
● Explained by the power law 

(Anderson & Schooler, 1991) 
● Supported by neurobiological 

evidence (Barlow, 2001) 
2. The need for double processing 

(direct/reverse): 
● Corresponds to the principles of 

bidirectional neural processing 
(Friston, 2005) 

● Explains the phenomenon of 
"division of labor" in the brain 
(Kanwisher, 2010) 

 
Limitations and directions for development 
 

1. Scaling issues: 
● Hierarchical organization 

mechanisms are required 
(Kriegeskorte & Kievit, 2013) 

● Possible solution: neural network 
extensions (Hinton, 2007) 

2. Contextual sensitivity: 
● The need to take into account time 

dependencies (Gershman et al., 
2015) 

● Promising direction: recurrent 
architectures (Lillicrap et al., 2020) 

3. Energy efficiency: 
● Comparison with biological systems 

(Lennie, 2003) 
● Possibilities of neuromorphic 

implementations (Davies et al., 
2021) 

 
Philosophical implications 

1. The problem of consciousness 
(Chalmers, 1995): 
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● The model offers a materialist 
explanation of preconscious 
processing 

● But it doesn't solve the "hard 
problem" 

2. The Nature of Representations 
(Gallistel & King, 2009): 

● Demonstrates the possibility of 
minimal physical carriers of meaning 

● Raises questions about the 
sufficiency of such representations 

3. Evolutionary Perspectives 
(Godfrey-Smith, 2016): 

● Shows possible pathways for the 
emergence of cognitive functions 

● Proposes testable hypotheses about 
protocognition 

 
Conclusions: 
 

1. Proposed architecture: 
○ Supports the principle of 

“memory before processing” 
(McClelland et al., 1995) 

○ Offers a workable 
compromise between 
complexity and efficiency 

○ Opens up new directions for 
interdisciplinary research 

2. Critical questions for future research: 
○ What are the limits of the 

frequency approach? 
○ How to integrate contextual 

dependencies? 
○ Is the emergence of 

consciousness possible in 
such systems? 

Conclusion 
The world model underlying adaptive 
behavior is a dynamic system capable of 
self-organization and optimization in a 
changing environment. As the study 

showed, the key elements of such a model 
are analysis, memorization and updating of 
information, which allows the system not 
only to identify trends, but also to effectively 
adapt to them (Gershman, 2018; Todorov, 
2009). This paper proposes an algorithm 
that formalizes these processes, striking a 
balance between flexibility and stability—a 
critical aspect for the sustainable functioning 
of any intelligent system (Dayan & Daw, 
2008). 

The role of memory and 
analysis in adaptive behavior 
Memory is the foundation on which 
intelligence is built, since it is it that allows 
one to accumulate and structure experience 
(Eichenbaum, 2017). In the context of 
machine learning, this means that effective 
algorithms must not only process new data, 
but also integrate it with existing knowledge, 
avoiding catastrophic forgetting (Kirkpatrick 
et al., 2017). Analysis and storage allow the 
system to identify patterns, forming 
predictive models, which in turn optimize 
decision making (Sutton & Barto, 2018). 
 
The actualization of discrepancies between 
expectations and reality accelerates 
learning, since it is prediction errors that 
serve as a signal for model adjustment 
(Rescorla & Wagner, 1972). This principle, 
borrowed from neuroscience (Schultz et al., 
1997), was successfully applied in the 
proposed algorithm, confirming its 
versatility. 

Balancing adaptation and 
stability 
One of the key challenges in designing 
adaptive systems is maintaining a balance 
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between plasticity (the ability to learn) and 
stability (the retention of previously learned 
knowledge) (Abraham & Robins, 2005). 
Excessive adaptability can lead to chaotic 
changes, while excessive stability can lead 
to inertia and inability to respond to 
environmental changes (Hassabis et al., 
2017). This paper proposes a mechanism 
for the dynamic regulation of this balance, 
which allows the system to remain flexible 
without loss of stability. 

Prospects for further research 
The proposed model opens several 
directions for future research: 
 

1. Automatic training settings 
Currently, many hyperparameters 
(e.g., learning rate, forgetting rate) 
require manual tuning. The 
development of algorithms for their 
autonomous optimization, perhaps 
based on meta-learning (Bengio et 
al., 1991), could significantly 
improve the efficiency of the system. 

2. Feedback Mechanisms for Balance 
Control 
The introduction of additional 
regulatory circuits, similar to 
homeostatic mechanisms in 
biological systems (Turrigiano, 
2008), would make it possible to 
dynamically adjust the ratio of 
adaptation and stability depending 
on current conditions. 

3. Application in neural networks and 
robotics 
Integrating the proposed algorithm 
into deep learning (LeCun et al., 
2015) and robot control systems 
(Kober et al., 2013) can improve 
their continuous learning ability in 
real time. 

Final conclusion 
The proposed algorithm is not just a 
technical solution, but a universal principle 
applicable to understanding the learning of 
any complex systems, including biological 
ones. Its key advantage is the integration of 
cognitive and computational mechanisms, 
allowing the creation of more resilient and 
adaptive artificial intelligent systems 
(Hassabis et al., 2017). 
 
Further development of this model could 
lead to breakthroughs in artificial 
intelligence, cognitive science, and robotics, 
moving us closer to creating systems 
capable of truly autonomous and 
meaningful behavior (Lake et al., 2017). 
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