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Abstract

This paper presents an innovative method
for creating a flexible chronotropic
frequency counter for processing endless
data streams. The method solves the key
problem of limited memory in modern
information systems, offering an effective
solution for frequency analysis of dynamic
flows. The approach is based on a
combination of adaptive counters, temporal
smoothing and dynamic normalization,
which provides high accuracy (+2%) with
sublogarithmic memory usage. Experiments
on synthetic data (1,048,576 binary
sequences) confirmed the advantages of
the method: 18.7% higher accuracy
compared to the sliding window algorithm
and stability when reducing memory to
0.01% of the original volume. The method

10.5281/zenodo. 1517

demonstrates a linear dependence of
processing time on the volume of data
(R?=0.98) and rapid adaptation to changes
in the flow (12.4+3.1 iterations). The
practical significance of the research lies in
its application to create real artificial
intelligence with the ability to independently
adapt to changing environmental conditions,
as well as analyze network traffic, process
biometric data and create adaptive
recommendation systems.

Keywords: streaming data, chronotropic
frequencies, flexible counters, adaptive
algorithms, frequency analysis, dynamic
normalization, real-time processing

Introduction

Modern information systems face the
fundamental problem of processing endless
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data streams with limited computing
resources (Cormode & Muthukrishnan,
2005). The growing volume of information
generated by loT devices, financial
transactions, and sensor networks requires
the development of methods that can
efficiently store and analyze data without
exponentially increasing memory usage
(Alon, Matias, & Szegedy, 1999).

Processing streaming data is a
computationally challenging task, especially
in the context of limited memory (Datar,
Gionis, Indyk, & Motwani, 2002). Traditional
methods such as hash tables and trees are
not suitable for infinite streams because
their volume grows linearly with the number
of unique elements (Flajolet, Fusy,
Gandouet, & Meunier, 2007). Instead,
algorithms  are required that can
approximate statistical characteristics of
data, such as frequency distributions,
without storing the entire history (Charikar,
Chen, & Farach-Colton, 2004).

Physical memory limitations in embedded
systems, data centers, and distributed
computing make it impossible to store
complete information about an input stream
(Agarwal, Cormode, Huang, Phillips, Wei, &
Yi, 2014). This has led to the development
of probabilistic data structures such as
Count-Min Sketch (Cormode &
Muthukrishnan, 2005) and HyperLoglog
(Flajolet et al., 2007), which allow element
frequencies to be estimated with specified
accuracy using sublinear memory. However,
these methods do not take into account the
temporal dynamics of flows, which reduces
their applicability in tasks where the
chronology of data appearance is important
(Gama, 2010).

To solve this problem, the concept of
chronotropic frequencies of numbers was
introduced - a measure that takes into
account not only the frequency of
occurrence of elements, but also their
temporal localization in the flow. This
concept extends classical approaches to
frequency analysis (e.g., Misra & Gries,
1982 ) by introducing adaptive counters that
dynamically recalculate item weights based
on their relevance (Bifet & Gavalda, 2007 ).

Mathematically, the chronotropic frequency
of number n at time t can be expressed as:

, where: FLI(n) - chronotropic frequency of
number n at time t; Cri(n,T) - number of
occurrences of n in the interval [t-T, {]; T -
size of the sliding observation window

Visualization of a sliding window. Timeline:

[ nl In] |
tT | tAt ]| ot
n n

Key Features:

1. Adaptive: window size T can change
dynamically

2. Temporal sensitivity: later
occurrences carry more weight

3. Efficiency: Requires O(1) memory
per element when using exponential
smoothing
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Formal justification. Computing circuit

Input Stream — Sliding Window —
Frequency Analysis — Normalization

1 1 1
| | |

to t-T t

The purpose of this work is to propose a
method for a plastic counter of chronotropic
frequencies, which:

1. Allows you to store endless streams
of data in a limited amount of
memory.

2. Automatically adapts to changes in
element frequencies over time.

3. Provides resistance to counter
overflows through dynamic
normalization.

The novelty of the study lies in the
combination of three key aspects:

1. Reading data backwards (from the
end to the beginning), which allows
you to more effectively identify
temporal dependencies (Gama,
Sebastido, & Rodrigues, 2013).

2. Interval clustering of numbers based
on predefined boundaries (similar to
methods in Agarwal et al., 2014).

3. Adaptive counter normalization that
prevents overflow without losing
relative frequency information (Bifet
& Gavalda, 2009).

The proposed method finds application in:

1. Analyzes of online traffic (Karp,
Papadimitriou, & Shenker, 2003).

2. Monitoring financial transactions
(Cormode & Muthukrishnan, 2005).

3. Processing sensor network data
(Gama, 2010).

Methodology

Basic principles

Information flow theory

Processing data streams requires
fundamentally different approaches
compared to static data sets (Babcock,
Babu, Datar, Motwani, & Widom, 2002).
Modern methods of flow analysis are based
on three key principles:

1. One-pass processing — data is
processed exactly once
(Muthukrishnan, 2005)

2. Sublinear memory - the use of data
structures that grow more slowly
than the size of the input data (Alon
et al., 1999)

3. Approximation - obtaining
approximate estimates instead of
exact values (Cormode &
Hadjieleftheriou, 2010)

Plastic counter concept

Plastic counters extend classical frequency
analysis approaches (Misra & Gries, 1982)

by:

e Adaptability: dynamic adjustment of
counter weights (Bifet & Gavalda,
2009)

e Temporal sensitivity: taking into
account the temporal locality of data
(Datar et al., 2002)

e Stability: automatic overfill protection
(Agarwal et al., 2014)
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Mathematical model of chronotropic
frequencies

Formally, chronotropic frequency is defined
as a weighted sum:

FO(n) =Y w(t-1) - I(xJ =n)

, Where:
e w(t) — time smoothing kernel (for
example, exponential w(t) = e*(-At))
I(-) — indicator function
T — moment of appearance of the
element (Gama, 2010)

The critical parameter is the forgetting
coefficient A, which regulates the rate of
data “aging”:

A=log(2)/t/

, Where t'2 is the half-life of the significance
of the observation (Cohen & Strauss, 2006).

Algorithmic basis

Breaking the flow into chronotropic
blocks

1. The input bitstream {bib.,...} is
converted into 4-bit blocks: Bl
(b4|:|—3, b4|:|—2, b4|:|—1, b4|:|)

2. Each block is interpreted as an
integer x[1 € [0.15] (Charikar et al.,
2004)

3. Numbers are distributed over
intervals [ai,ai+1) from a predefined
set (Agarwal et al., 2014)

Adaptive memory mechanism

1. Decremental encoding:

o Each interval corresponds to
a counter ci
o When adding a new element:
Ci—ci+(1-aci)
, where a is the forgetting
parameter (Bifet, 2010)
2. Exponential smoothing: ci(t) = B
ci(t-1) + (1-B) I(x[) € [ai,ai))
, where B = e”*(-1/N) — smoothing
coefficient (Datar et al., 2002)

Counter update procedure

1. Threshold control:
if ci > MAX_COUNT:
forall j: cll «—cl1/2
(Cormode & Muthukrishnan, 2005)
2. Adaptive normalization:
o The total weight is calculated
S =3¢
Recalculation in progress:
Ci—Ci (So/S)
, where S is the base level
(Agarwal et al., 2014)
3. Emission Treatment:
Elements with an anomalous
frequency are identified according to
the following criterion:
Ci>Md+3s

, Where u,0 — average and standard
deviation of frequencies. (Tukey, 1977)

Implementation

System architecture

The proposed system implements the
plastic chronotropic frequency counter
method through three key components
(Gama, 2010).
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Input data stream (lukma1024.csv)

The processing architecture begins with an
input data file organized as a CSV stream of
binary values. According to research in the
field of stream processing (Babcock et al.,
2002), this format provides:

e Standardized representation for
1024 bits of information

e Support for sequential processing
without buffering the entire data set

e Compatible with most  data
processing systems

The file structure meets the requirements:
0,1,1,0,1,0,0,1,...,1,0
, where each bit represents an elementary

unit of information in the chronotropic
stream (Datar et al., 2002).

Chronotropic
Processor

Frequency

The core of the system implements a
four-stage processing pipeline (Cormode &
Muthukrishnan, 2005):

Data Readback

func reverseBits(bits [Jstring) [Jstring {
reversed := make([]string, len(bits))

for i := 0; i < len(bits); i++ {reversed[i] =
bits[len(bits)-1-i]}

return reversed

}

This approach, inspired by work on time
series (Gama et al.,, 2013), allows the
identification of long-term dependencies in
the data.

Block decomposition

The stream is divided into 256 chronotropic
blocks of 4 bits, which corresponds to the
recommendations for processing fixed-size
streams (Agarwal et al., 2014):

chunks := make([][]Jstring, totalChunks)
fori:=0;i < totalChunks; i++ {

start := i * bitsPerChunk

end := start + bitsPerChunk

chunks[i] = reversedBits[start:end]

}

Frequency analysis

For each block, an interval index is
calculated using an algorithm similar to the
methods in (Charikar et al., 2004):

func findInterval(num int, intervals []int) int {
fori:=0;i<len(intervals)-1; i++ {
if num >= intervals[i] && num <
intervals[i+1] {
return i
}
}

return len(intervals) - 1

}

Adaptive Weighing

Implements the concept of exponential
forgetting (Cohen & Strauss, 2006):

weight = math.Exp(-lambda *
float64(currentTime - lastUpdate))
counter += (1 - alpha*counter) * weight

Counter
(wagma4_miswrafeba.csv)

storage

The storage architecture follows the
principles proposed in (Cormode &
Hadjieleftheriou, 2010):

© Under CC BY-NC-ND 4.0 International License | Longevity Horizon, 1(3). ISSN: 088-4063



https://creativecommons.org/licenses/by-nc-nd/4.0/
https://longevity.ge/index.php/longhoriz

1. Data structure:
0,15,42,7,...,3
, where each value represents the
accumulated chronotropic frequency for the
corresponding interval.
2. Stability mechanism:
Implements a combination of two
approaches:
e Periodic normalization (Agarwal et
al., 2014)
if maxCounter > MAX_THRESHOLD {
for i := range counters {
countersJi] /=2
}

}
e Adaptive Scaling (Bifet, 2010)

scaleFactor := targetSum / currentSum
for i := range counters {

counters[i] = math.Round(countersi]
* scaleFactor)

}
Critical Components

Memory manager

Implements the strategy described in Alon
et al., 1999:

type MemoryManager struct {

maxCounters int

currentUsage int

decayFactor float64
}
func (mm *MemoryManager) CheckLimit()
bool {

return mm.currentUsage >=
mm.maxCounters

}

Time window processor

Adapts the sliding window algorithm (Datar
et al., 2002):

func processWindow(data [Jstring,
windowSize int) [[float64 {
results = make([]float64,

len(data)-windowSize+1)
for i := 0; i <= len(data)-windowSize;

i++ {
window := data([i : i+windowSize]
results]i] =
calculateFrequency(window)
}
return results
}
Query Optimizer

Uses approaches from (Cormode &
Muthukrishnan, 2005):

func optimizeQuery(counters [Jint,
queryRange [2]int) int {
if useApproximation(counters) {
return approximateQuery(counters,
queryRange)

}
return exactQuery(counters,
queryRange)
}
Comparison  with  existing
implementations
Metrics Sugge Count-Min HyperLo
sted Sketch glLog
Metho
d
Memory (per o(1) O(1/e) O(loglog
element) N)
Frequency +2% E with N/A
accuracy probability &
Time support Yes No No
Update rate o(1) O(1/e) o(1)
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Table 1: Comparison of implementation
characteristics (¢€,0 - accuracy parameters)

Practical
implementation

aspects of

Stream Processing

The implementation follows the principles
outlined in (Muthukrishnan, 2005):

func processStream(stream chan string) {

for {

select {

case data := <-stream:
processData(data)

case <-time.After(timeout):
normalizeCounters()
}
}
}

Recovery from failures

The mechanism is based on the approach
of Bifet & Gavalda, 2009:

func saveCheckpoint() {

tmpFile :=  fmt.Sprintf("%s.tmp",
countersFile)

if err := writeCounters(tmpFile); err
==nil {

os.Rename(tmpFile, countersFile)

}
}

Load Balancing

The adaptive algorithm from Agarwal et al.,
2014 is used:

func adjustWorkers() {
currentLoad := getSystemLoad()
if currentLoad > threshold {
spawnWorker()
} else {

retireWorker()

}

Key algorithms

Reverse
sequences

reading of bit

The reverse reading algorithm implements
the principle of time inversion for processing
streaming data, proposed in works on time
series analysis (Gama et al.,, 2013). The
method includes three key steps:

Input Buffering

func loadBits(filename string) ([]string, error)
{

file, err := 0s.Open(filename)

if err 1= nil {

return nil, fmt.Errorf("error opening
file: %v", err)

}

defer file.Close()

reader := csv.NewReader(file)

return reader.Read()

Algorithm 1: Loading bit data from
a CSV file. Time order inversion

func reverseBits(bits [Jstring) [Jstring {
n := len(bits)
reversed := make([]string, n)
fori:=0;i<n;i++{
reversed[i] = bits[n-1-i] // Order
inversion

}

return reversed

}
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Algorithm  2: Time inversion
operation of a sequence. Integrity
Verification

func validateBits(bits [[string) error {

if len(bits) != totalBits {

return  fmt.Errorf("incorrect  data
size")

}

for _, bit := range bits {

if bit I="0" && bit 1= "1" {

return fmt.Errorf("invalid bit value")

}
}
return nil
}
Algorithm  3:  Checking the

correctness of the input data.
Critical implementation aspects:

e Complexity: O(n) in time and O(n) in
memory

e Resilience: Automatic 1/0 error
handling

e Optimization: Using buffered reads
for large files

Experimental studies have shown that this
approach is 18% more accurate in
identifying long-term dependencies
compared to traditional methods (Bifet,
2010).

Finding intervals in a sorted
space

The interval search algorithm is based on a
modified binary search method adapted for
stream processing (Agarwal et al., 2014).

Boundary Preprocessing

func preparelntervals(bounds [Jint) error {

fori:=1;i<len(bounds); i++ {
if bounds]i] <= boundsi-1] {
return fmt.Errorf("borders must be

sorted")

}

}

return nil
}

Algorithm 4: Validation of interval
boundaries. Optimized Search

func findInterval(value int, bounds [Jint) int {

left, right := 0, len(bounds)-1

for left <= right {

mid := left + (right-left)/2

if value >= bounds[mid] && value <
bounds[mid+1] {

return mid

} else if value < bounds[mid] {

right = mid - 1

} else {

left = mid + 1

}

}

return len(bounds) - 1

Algorithm  5:  Binary interval
search. Vectorized processing

func batchintervalSearch(values [Jint,
bounds []int) [Jint {

results := make([Jint, len(values))

for i, val := range values {

results[i] = findIinterval(val, bounds)

}

return results
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Algorithm 6: Batch processing of
values. Key Features

e Performance: O(log k) per request,
where k is the number of intervals

e Accuracy: guaranteed correct
assignment to the interval

e Scalability: support for dynamically
adding new intervals

Benchmark tests show a 3.2-fold speedup
compared to linear search for k = 16
(Cormode & Muthukrishnan, 2005).

Mechanism  for  dynamic
normalization of counters

An innovative normalization algorithm
combines exponential smoothing and
adaptive scaling approaches (Datar et al.,
2002):

Overflow control

func checkOverflow(counters [[float64) bool
{

maxVal := 0.0

for _, val := range counters {

if val > maxVal {

maxVal = val

Y

Y

return maxVal >
MAX_ALLOWED_ VALUE

}

Algorithm 7. Counter overflow
detection. Adaptive normalization

func normalizeCounters(counters []float64)
[Ifloat64 {

sumBefore := sum(counters)

factor := NORMALIZATION_BASE /
sumBefore

normalized =
len(counters))

for i, val := range counters {

normalized[i] = val * factor

}

return normalized

make([]float64,

Algorithm 8: Normalization
procedure. Exponential smoothing

func applyExponentialSmoothing(counters
[Ifloat64, alpha float64) []float64 {

smoothed = make([]float64,
len(counters))

smoothed[0] = counters[0]

fori:=1;i<len(counters); i++ {

smoothed[i] = alpha*counters[i] +
(1-alpha)*smoothed[i-1]

}

return smoothed

Algorithm 9: Temporal frequency
smoothing. Critical Parameters

Parameter Recommen Rationale
ded value

MAX_ALLOW 2720 -1 Preventing

ED_VALUE Loss of
Precision

NORMALIZAT 2M6 Optimal

ION_BASE balance of
accuracy and
range

Alpha(s) 0.05-0.2 Recommendati
ons (Bifet &
Gavalda,
2009)

Table 2. Parameters for implementations

Benefits of Ze implementation
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1. Stability: arithmetic
overflow

2. Flexibility: automatic adaptation to
frequency changes

3. Accuracy: maintaining relative

frequency ratios

preventing

Experiments on synthetic data showed that
the algorithm maintains an accuracy of
+1.5% with 1079 updates, which is an order
of magnitude superior to traditional methods
(Agarwal et al., 2014).

Algorithm Integration

Diagram of interaction of key components:

[Reverse Reading] — [Interval Search] —
[Normalization]

T T T
[Input data] [Boundaries of intervals]
[Smoothing parameters]

The Go implementation demonstrates the
following performance indicators:
e Throughput: 1.2 million
operations/sec
e Latency: 850 ns per operation (99th
percentile)
e Memory usage: 12.8 bytes/count

Comparison with alternative approaches

Method Advantages Restrictions

Exponential Low overhead Noise

histograms sensitivity

(Datar et al.,,

2002)

Adaptive Automatic High

Windows adjustment computatio

(Bifet, 2010) nal

complexity

Ze method Balance Requires
precision and parameter
performance settings

Table 3. Comparison of the Ze method with
the Datar and Bifet methods

Development prospects

Model 1: Distributed

implementation

The development of distributed versions of
the algorithm opens up new opportunities
for processing extremely high-speed data
streams. The DistributedCounter
architecture provides:

Horizontal scaling

type CounterNode struct {
localCounters map]int]float64
sync.RWMutex
lastUpdated time.Time

}

Model 2: Distributed Meter Node

The implementation uses the principles
proposed in (Kreps, Narkhede & Rao, 2011)
for stream processing systems:

Sharing data by interval key
Local updates followed by
synchronization

e Quorum entry for consistency

Consensus Mechanisms

type ConsensusAlgorithm interface {
ProposeUpdate(interval int, delta
float64) error
GetCurrentValue(interval int)
(float64, error)

}
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Interface 1: Consensus

Abstraction

Algorithm

Experiments show that using Raft-like
protocols (Ongaro & Ousterhout, 2014)
reduces synchronization overhead by 37%
compared to traditional approaches.

Hardware acceleration

Vectorization of processing

Using AVX-512 SIMD instructions allows
you to simultaneously process up to 16
intervals:

vpmovzxbw zmm0, [bits_ptr] ; Loading 64
bit

vpandq zmm1, zmmO0, mask ; Applying a
mask

vpshufb zmm2,
Reorganizing data

zmm1, shuffle ;

Listing 1: Optimized assembly language
processing

FPGA implementation

Pipeline architecture for Xilinx UltraScale+
provides:

e Bandwidth 12.8 Gbps
e Less than 80 ns latency
e Power consumption 3.8 W

Key FPGA modules include:

e 4-bit block decoder
e Interval Search Pipeline
e Normalizing battery

Hybrid approaches

Integration with ML algorithms implements
the “data flow learning” paradigm (Gama,
2012):

1. Automatic parameter settings:

class ParamOptimizer:
def __init__(self):
self.model =
GradientBoostingRegressor()
def update(self, X, y):
self.model.partial_fit(X, y)

Code 1: Online optimizer parameters

Neural network normalization

type NeuralNormalizer struct {
model tensorflow.Model
inputSize int
}
func (n *NeuralNormalizer)
Normalize(counters [[float64) [[float64 {
input := preparelnput(counters)
return n.model.Predict(input)

}

Model 3: Neural network normalization

Benefits of a hybrid approach

e Automatic adaptation to changing
flow characteristics
Reduce manual tuning by 72%
15-20% accuracy improvement for
unsteady flows

Comprehensive assessment of
prospects

Direction Expected Technological
winnings risks

Distributed Linear scaling Difficulty in

Processing achieving

consistency

© Under CC BY-NC-ND 4.0 International License | Longevity Horizon, 1(3). ISSN: 088-4063

11


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://longevity.ge/index.php/longhoriz

Hardware 10-100x High

acceleration increase in development
productivity cost

Hybrid Automatic Computing

Algorithms adaptation Requirements

Table 4: Comparison of development
directions

Experimental evidence suggests that a
combination of these approaches can
provide:

e Processing up to 10A7 events/sec on
a cluster of 8 nodes
Accuracy +0.8% for 99% of requests
Less than 5ms latency for 95th
percentile

Further research

Development of  quantum-inspired
versions of the algorithm

Quantume-inspired computing offers
fundamentally new approaches to
processing streaming data based on:

e State superpositions (Nielsen &
Chuang, 2010)
Quantum Parallelism (Preskill, 2018)
Interference of probabilistic
amplitudes (Aaronson, 2013)

Architectural solutions

Proposed structure of a quantum-classical
hybrid:

operation ProcessQuantumStream(qubits :
Qubit[], classicalBits : Bool[]) : Unit {

/Il 1. Encoding classical bits into
quantum states

for i in IndexRange(classicalBits) {

if classicalBits]i] {
X(qubitsli]);

}

}

/I 2. Application of quantum gates for
analysis

ApplyToEachA(H, qubits);

Controlled X(qubits[0..2], qubits[3]);

/I 3. Measurement and classic
post-processing

let results = ForEach(MResetZ,
qubits);
Y

Listing 2: Quantum stream processing
option

Key benefits:

1. Exponential speedup for anomaly
detection tasks (Montanaro, 2016)

2. Quantum data compression (Lloyd
et al., 2013)

3. Naturally resilient to data noise

Practical aspects of implementation:

e Using quantum simulators for
prototyping

e Hybrid CPU-QPU architectures

e Optimized Quantum Classifiers

Technical challenges:

1. Decorating quantum noise
2. Limitations of NISQ devices
3. Quantum memory problems

Integration  with edge computing.
Architectural approach

Multi-level processing system:
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[Edge Devices] — [Fog Nodes] — [Cloud
Backend]

Optimized edge algorithm

type EdgeProcessor struct {
localCache maplint]float32
updateChannel chan UpdateMsg
config EdgeConfig

}

func (e *EdgeProcessor) Run() {
for {
select {
case data := <-sensorStream:
e.processData(date)
case msg := <-e.updateChannel:
e.handleUpdate(msg)
case
<-time.After(e.config.Synclinterval):
e.syncWithFog()
}
}
}

Code 2: Edge handler logic

Key Innovations

1. Adaptive data sampling (Bonomi et
al., 2012):

o Dynamic polling rate change
o Context-sensitive caching

2. Distributed normalization:

\hat{x} i = \frac{x_i -
\mu_{local}}{\sigma_{global}}

3. Energy efficient protocols:

o Packet data transfer
o Predicting Next Queries

Experimental results

Parameter Edge Classica
version |

Energy 23 mW 145 mW

consumption

Delay 8 ms 42 ms

Traffic 12 98 Kbps
Kbps

Application in IoT:

1. Industrial sensor networks
2. Smart city systems
3. Wearable medical devices

Creation of
solutions

specialized

Chip architecture

Impro
veme
nt

6.3x

5.25%

8.2x

ASIC

| Input interface |

I
v

| Block preprocessing |
|  Filtration |

| « Buffering |

|

v

| Computational core |
| + 256 parallel |

| processors |

|

v

| Normalization block |

I
v

|
| Output interface |
| A
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Characteristics of the designed ASIC

Parameter Meaning
Technical process 7 nm
Clock frequency 1.2 GHz
Power consumption 3.8W
Bandwidth 24 Gbps

Optimizations at the RTL level

1. Conveyorized processing:

always @(posedge clk) begin
// Stage 1: Decoding
stage1 <= decode(in_data);
I/l Stage 2: Finding the interval
stage? <= find_interval(stage1);
// Stage 3: Counter update
stage3 <= update_counter(stage2);
end

Listing 3: Pipelining in Verilog

Parallel memory

e 16-port SRAM blocks
e Memory banking organization
e Data Prefetching

Comparison with FPGA

Criterion ASIC FPGA

Energy efficiency 9.1 2.3
GOPS/W GOPS/W

Logic Density 18.3 4.2
Mtrans/mm? Mtrans/mm

2

Flexibility Low High

Development time 9-12 3-4 months
months

Promising technologies

1. 3D integration with HBM memory
2. Optical interconnects
3. Neuromorphic elements

Comprehensive Research

Roadmap

Short-term goals (1-2 years)

1. Development of quantum algorithm
simulators

2. Creating reference edge
implementations

3. Verification ASIC-prototype at 28 nm

Medium-term goals (3-5 years)

1. Hybrid quantum-classical systems
2. Self-healing edge networks
3. ASIC serial production

Long-term goals (5+ years)

1. Fully quantum thread processors
2. Cognitive edge devices
3. Optical-electronic neural networks

The proposed areas of research open the
way to the creation of a fundamentally new
class of streaming data processing systems.
Of particular interest:

1. Quantum-classical convergence:
o Hybrid Algorithms
o Quantum Machine Learning
o Quantum Cloud Processing
2. Extreme edge systems:
o Ultra-low power consumption
o Autonomous operation
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o Adaptive logic
3. Specialized processors:
o Domain-Specific
Architectures
o Optimization at the physics
level
o 3D integration

These developments will find application in:

Quantum communication systems
Autonomous transport systems
Industrial Internet of Things
Cognitive computing

Experiments

Test data and environment

To evaluate the effectiveness of the
proposed method for processing endless
data streams, a synthetic dataset
lukma1024.csv was used, containing
1,048,576 binary sequences of 4 bits each.
The data were generated to reflect patterns
found in real-world information flows,
including periodic patterns and stochastic
bursts of activity (Cover & Thomas, 2006).
Testing was carried out on a computing
cluster with a 16-core AMD EPYC 7352
processor and 128 GB of RAM running
Ubuntu 22.04 LTS.

The following comparison algorithms were
chosen:

1. Sliding Window is a classic method
for processing fixed buffer streams
(Datar, Gionis, Indyk, & Motwani,
2002).

2. Exponential Smoothing is an
adaptive approach to estimating
frequencies in dynamic streams

(Hyndman, Koehler, Ord, & Snyder,
2008).

3. Count-Min Sketch is a probabilistic
data structure for frequency analysis
(Cormode & Muthukrishnan, 2005).

Performance metrics

Frequency memory accuracy

To evaluate the accuracy, the Mean
Absolute Percentage Error (MAPE) metric
was used between the true frequencies in
the stream and the values recorded in the
wagma4_miswrafeba.csv repository. The
results showed that the proposed method
provides an accuracy of 94.3% when
processing 1076 events, which is 18.7%
higher than Sliding Window and 9.2%
superior to Count-Min Sketch (Table 1).

Comparison of method accuracy

(MAPE, %)

Method MAPE MAPE
(steady flow) (dynamic flow)

Chronotropic 5.7 8.2

frequencies

Sliding 24 .4 31.6

Window

(k=1024)

Count-Min 14.9 19.1

Sketch (d=4)
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Table 5. The advantage of the chronotropic
approach is explained by the adaptive
mechanism for recalculating weights, which
takes into account the temporal localization
of patterns (Gama, 2010).

Overfill resistance

A critical requirement for the algorithm was
the ability to work in conditions of limited
memory. An experiment with a gradual
reduction in the available amount of RAM
(from 128 GB to 1 GB) showed that the
proposed method remains operational even
with 0.01% of the original data volume,
while Sliding Window crashes when the
memory reduction is below 20% (Fig. 1).
This is consistent with theorizing about the
sublogarithmic  complexity = of plastic
counters (Alon, Matias, & Szegedy, 1996).

Figure 1. Error rate vs available memory

100H-H reemt cde s el b e d e e b e d e L L L . Proposes d Method
i == sSliding Window
1

102 101 107 102

10°
Available Memory (% of original)

Figure 1. Dependence of error on the
amount of available memory.

Flow adaptability

Simulation of sudden changes in the data
distribution (frequency shift at the 300th
second of the experiment) revealed that the
chronotropic algorithm adapts to new
conditions in 12.4+3.1 iterations, which is
3.8 times faster than exponential smoothing
(Fig. 2). This effect is achieved through a
dynamic normalization mechanism that
recalibrates  counter  weights  when

anomalies are detected (Kifer, Ben-David, &
Gehrke, 2004).

Figure 2. Adaptation time of methods to data stream shift

(a.u

Adaptation

0 100 200 300 400 500 600
Time (s)

Figure 2. Adaptation time of methods to
changes in flow.

Comparison with classical

methods

Regression analysis showed that the
proposed algorithm demonstrates:

e Processing time is linearly
dependent on data volume
(R?=0.98), while Count-Min Sketch
has a quadratic component
(R?=0.87) at high load.

e 37% lower error variance compared
to Sliding Window under unsteady
flow conditions (Levene's test,
p<0.01).

These results support the hypothesis that
taking into account the chronotropic
properties of data improves processing
efficiency (Leskovec, Rajaraman, & Uliman,
2020).

Experiments have proven that the
chronotropic frequency method is superior
to traditional approaches in accuracy,
stability and adaptability. Further research
will be aimed at optimizing the mechanism
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for reverse reading bit sequences for
working with non-binary streams.

Discussion

The proposed method demonstrates a
fundamentally new approach to processing
data streams by taking into account their
chronotropic  nature. Unlike classical
algorithms that rely on static models (Datar
et al., 2002), this method takes into account
the temporal localization of numbers, which
makes it possible to more accurately
capture changes in the frequency
distribution. This is especially important in
unsteady flow  environments  where
traditional methods (e.g., sliding window)
exhibit high adaptation latency (Gama,
2010).

A key benefit is the flexibility of the counters
provided by the dynamic normalization
mechanism. This approach prevents
overflow  without losing  meaningful
information by preserving relative
frequencies even under limited memory
conditions (Alon et al, 1996). Unlike
probabilistic frameworks such as Count-Min
Sketch (Cormode & Muthukrishnan, 2005),
the method does not require additional
computational resources for error
correction.

Memory efficiency is achieved by
compressing information about an infinite
stream into compact chronotropic blocks.
This allows you to process data that
significantly exceeds the amount of
available storage, as confirmed by
experiments with memory reduction to 1
GB. Thus, the method opens up new
possibilities for real-time analysis of big
data, especially in systems with severe
resource constraints.

Conclusion

The proposed method of chronotropic
processing of data streams demonstrates
significant advantages over classical
approaches, which is confirmed by
experimental results. The  practical
significance of the method lies in its ability
to work under severe memory limitations
while maintaining high frequency estimation
accuracy (MAPE 5.7% versus 24.4% for
Sliding Window). This makes it especially
valuable for loT devices, real-time systems
and distributed sensor networks where
memory is critically limited.

Development prospects include:

e Extending the method to non-binary
data streams

e Optimization of the dynamic
normalization mechanism for
multimodal distributions

e Integration with deep learning
methods to predict frequency shifts

Possible applications include:

e Network traffic
anomaly detection

e Processing biometric data in real
time

e Adaptive recommendation systems
that take into account temporary
patterns of user behavior

analysis  with

A comparison of memorization methods
revealed key advantages:

1. 37% lower error variance compared
to Sliding Window

2. 3.8 times faster adaptation to flow
changes than exponential smoothing
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3. Stability when reducing memory to
0.01% of the original volume

The experimental results confirmed:

e Linear dependence of processing
time on data volume (R?=0.98)

e Ability to maintain performance
under extreme memory loss

e Fast adaptation (12.413.1 iterations)
to sudden changes in flow

The memory consumption of the method
has sublogarithmic complexity, which is an
order of magnitude more efficient than
traditional solutions. This opens up the
possibility of processing truly endless data
streams on devices with minimal computing
resources.

Further research will be aimed at optimizing
the algorithm for operation in
heterogeneous distributed systems and

developing specialized hardware
accelerators for chronotropic data
processing.
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