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Abstract 
Aging in biological organisms is intricately 
linked to the accumulation of damage in 
long-lived irreparable structures, which 
remain unchanged throughout life. These 
structures include lens proteins (crystallins), 
DNA of postmitotic neurons, mitochondria of 
cardiomyocytes, tooth enamel, and 
centrioles of stem cells. Formed in the early 
stages of ontogenesis, they serve as 
"entropy accumulators"—a thermodynamic 
measure of molecular disorder. The 
impossibility of their replacement is dictated 
by evolutionary compromises: for instance, 
the stability of centrioles is crucial for the 
asymmetric division of stem cells, yet their 
selective inheritance results in the transfer 
of damage to progeny, thereby accelerating 
tissue aging. The accumulation of oxidized 
proteins, DNA mutations, and dysfunctional 
organelles disrupts homeostasis, triggering 
neurodegeneration, cataracts, and heart 

failure. This article examines the 
mechanisms underlying the damage to 
these structures, their role in age-related 
pathologies, and promising therapeutic 
strategies, including senolytics, CRISPR 
correction, and biomimetic materials. 
Special emphasis is placed on centrioles as 
key regulators of cellular entropy: while their 
stability supports tissue regeneration, defect 
accumulation leads to gene expression 
disruption and contributes to oncogenesis. 
Understanding the balance between 
longevity and vulnerability in irreparable 
structures opens new avenues for 
combating aging through targeted entropy 
management. 
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Introduction 
Aging is a universal biological process 
characterized by a progressive decline in an 
organism's functional capacity and an 
increased risk of disease. Despite 
considerable advances in aging research, 
many aspects of this process remain 
subjects of intense scientific debate. One of 
the key concepts explaining aging is the 
entropy accumulation theory—a 
thermodynamic measure of disorder, 
manifesting in biological systems through 
molecular, organellar, and tissue damage 
(López-Otín et al., 2013). The body 
continuously counteracts entropy by 
renewing cells and structures: liver 
hepatocytes regenerate every 150–200 
days, epidermal skin cells every 2–4 weeks, 
and erythrocytes every 120 days (Sender et 
al., 2016). However, certain unique 
long-lived structures do not undergo 
renewal throughout life, effectively 
becoming "reservoirs" of molecular damage. 
These irreparable elements, from lens 
proteins to postmitotic neurons, play a 
critical role in the development of 
age-related diseases, forming the basis for 
neurodegeneration, cataracts, and heart 
failure (Truscott, 2005; Lodato et al., 2018). 

Irreparable Structures: 
Definition and Classification 
Long-lived irreparable structures are 
molecules, organelles, or tissues formed 
during early development that are not 
replaced throughout life. Their stability 
ensures specialized function, but the lack of 
regeneration makes them vulnerable to 
accumulating damage. These structures 
include: 
Molecular Level: 

● Lens crystallins—proteins ensuring 
lens transparency, synthesized 
during embryogenesis and not 
replaced later (Bloemendal et al., 
2004). 

● DNA in postmitotic cells (neurons, 
cardiomyocytes)—non-replicating, 
with repair mechanisms becoming 
less effective with age (Vermeij et 
al., 2016). 

Organellar Level: 
● Centrioles—cylindrical structures 

organizing the mitotic spindle; 
asymmetrically inherited in stem 
cells, accumulating age-related 
changes (Wang et al., 2021). 

● Neuronal mitochondria—losing 
mitophagy capacity, leading to the 
accumulation of defective mtDNA 
(Sun et al., 2016). 

Tissue Level: 
● Tooth enamel—an acellular 

mineralized tissue incapable of 
regeneration (Selwitz et al., 2007). 

● Central nervous system (CNS) 
neurons—do not regenerate axons 
after injury due to the expression of 
growth inhibitors (He & Jin, 2016). 

These structures share a common principle: 
their longevity results from a trade-off 
between stability and functionality. For 
example, enamel mineralization protects 
teeth but prevents self-repair, while 
neuronal division cessation preserves 
neural networks necessary for memory but 
makes the brain vulnerable to trauma 
(Herculano-Houzel, 2014). 

Entropy Accumulation as a 
Driving Force of Aging 
According to the second law of 
thermodynamics, all systems tend toward 
increased entropy. In biology, this is 
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expressed as oxidative DNA damage, 
protein denaturation, and organelle 
dysfunction. The body combats entropy 
through self-repair systems—DNA repair, 
antioxidants, and cellular renewal. However, 
irreparable structures escape these 
mechanisms, becoming "hotspots" of 
accumulated damage: 

● Oxidative stress: Reactive oxygen 
species (ROS) generated by 
mitochondria oxidize lens crystallins, 
leading to aggregation and cataracts 
(Truscott, 2005). 

● Epigenetic changes: DNA 
methylation accumulation in 
postmitotic neurons disrupts gene 
expression related to synaptic 
plasticity (Xiong et al., 2020). 

● Mechanical wear: Tooth enamel 
gradually erodes, exposing dentin 
and increasing sensitivity (Lussi et 
al., 2012). 

The "garbage accumulation theory" 
suggests that aging accelerates due to cells' 
inability to remove damaged components 
(Terman & Brunk, 2006). Lipofuscin, a 
product of lipid and protein oxidation, 
accumulates in neuronal lysosomes, 
blocking autophagy and enhancing 
apoptosis (Höhn & Grune, 2013). 

Compromises: Why Is 
Regeneration Impossible? 
Across species, the ability to regenerate is 
often sacrificed for specialization. For 
instance: 

● CNS neurons: The absence of 
mitosis prevents tumor formation risk 
but makes the nervous system 
vulnerable to injury (Frade & 
López-Sánchez, 2010). 

● Lens: Loss of nuclei and organelles 
in lenticular cells minimizes light 

scattering but eliminates new protein 
synthesis (Bassnett et al., 2011). 

● Centrioles: Their stability in stem 
cells ensures asymmetric division 
but promotes tissue aging through 
the inheritance of "old" centrioles 
(Nigg & Holland, 2018). 

These trade-offs reflect a balance between 
immediate advantages (e.g., lens 
transparency) and long-term costs (e.g., 
cataract risk). 

Clinical Relevance: From 
Molecular Damage to Disease 
The accumulation of damage in irreparable 
structures underlies many age-related 
diseases: 

● Cataracts: Lens opacity due to 
crystallin aggregation—a leading 
cause of blindness (Asbell et al., 
2005). 

● Alzheimer's disease: Accumulation 
of tau protein and β-amyloid in 
neurons is linked to nuclear pore 
and mitochondrial dysfunction 
(Scheltens et al., 2021). 

● Heart failure: mtDNA mutations in 
cardiomyocytes impair energy 
metabolism (Brown et al., 2017). 

● Dental caries and enamel erosion: 
Demineralization leads to 
irreversible tooth destruction (Pitts et 
al., 2017). 

These conditions highlight the need for 
strategies to slow or reverse entropy 
accumulation. 
Modern Approaches to Combating Entropy 

● Senolytics: Drugs like fisetin and 
dasatinib selectively eliminate 
senescent cells, reducing the burden 
of "molecular debris" (Yousefzadeh 
et al., 2018). 

● Gene therapy: 
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○ CRISPR/Cas9 correction of 
mutations in postmitotic 
neurons (Moreno et al., 
2022). 

○ Telomerase activation to 
extend stem cell lifespan 
(Jaskelioff et al., 2011). 

● Biomimetic materials: 
○ Hydroxyapatite nanoparticles 

mimicking enamel structure 
(Ruan et al., 2016). 

○ Artificial chaperones 
stabilizing denatured proteins 
(Makley et al., 2015). 

Understanding the interplay between 
irreparable structures and entropy paves the 
way for novel anti-aging interventions. 

Modern Approaches to 
Combating Entropy 
Senolytics: Compounds such as fisetin and 
dasatinib selectively eliminate senescent 
cells, thereby reducing the burden of 
accumulated "molecular debris," which is 
known to contribute to aging-related 
dysfunctions (Yousefzadeh et al., 2018). 
Gene Therapy: 

● CRISPR/Cas9-mediated correction 
of mutations in postmitotic neurons, 
aiming to restore genomic integrity 
and cellular function (Moreno et al., 
2022). 

● Telomerase activation as a strategy 
to prolong the lifespan and 
regenerative potential of stem cells, 
counteracting telomere attrition and 
cellular senescence (Jaskelioff et al., 
2011). 

Biomimetic Materials: 
● Hydroxyapatite nanoparticles 

engineered to mimic the structural 
composition of enamel, offering 

potential applications in dental tissue 
regeneration (Ruan et al., 2016). 

● Artificial chaperones designed to 
stabilize denatured proteins and 
prevent aggregation-related cellular 
stress (Makley et al., 2015). 

Mitochondrial Replacement Therapy: 
Mitochondrial transplantation into oocytes 
has demonstrated potential in improving 
fertility by restoring cellular bioenergetics 
and reducing mitochondrial dysfunction 
(Fakih et al., 2021). 

Centrioles: A Novel Target in 
Aging Research 
Once regarded solely as 
microtubule-organizing centers, centrioles 
are now recognized as key regulators of 
cellular entropy. Their selective inheritance 
in stem cells plays a crucial role in tissue 
homeostasis but also poses a paradox: it 
contributes to the retention of damaged 
structures. Notable examples include: 

● Disruption of Asymmetric Division: 
Aging centrioles in intestinal stem 
cells have been linked to impaired 
epithelial regeneration and reduced 
tissue repair capacity (Liang et al., 
2020). 

● Cancer Implications: Supernumerary 
centrioles contribute to chromosomal 
instability, a hallmark of 
tumorigenesis (Nigg & Holland, 
2018). 

Emerging therapeutic strategies include 
oxidative stress inhibitors (e.g., 
N-acetylcysteine) and gene-editing 
approaches targeting centriole-associated 
proteins (Zhong et al., 2022). 
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Objective of This Study 
This article explores the role of long-lived, 
irreplaceable cellular structures in the aging 
process, integrating molecular, organellar, 
and tissue-level perspectives. The key 
areas of analysis include: 

● Mechanisms of damage 
accumulation within these 
structures. 

● Their association with age-related 
pathologies. 

● Evolutionary constraints limiting 
regenerative capacity. 

● Cutting-edge therapeutic strategies, 
spanning genetic engineering to 
biomimetic solutions. 

By synthesizing insights from neuroscience, 
gerontology, and materials science, this 
review offers a multidisciplinary approach to 
understanding and potentially mitigating 
aging. 

Long-Lived, 
Irreplaceable Molecules 

Lens Crystallins 
Crystallins are a specialized family of 
structural proteins that confer transparency 
and refractive properties to the eye's lens. 
These proteins are predominantly 
synthesized during early development and 
remain largely unrenewed throughout life 
(Bloemendal et al., 2004). Their exceptional 
longevity is vital for maintaining optical 
clarity; however, the absence of 
regeneration renders them susceptible to 
cumulative damage, a major factor in 
age-related cataract formation—the leading 
cause of blindness worldwide (Moreau & 
King, 2012). 

 
Crystallins constitute up to 90% of the 
water-soluble proteins in the lens. In 
mammals, they are classified into three 
major families: α-, β-, and γ-crystallins. 
α-Crystallins function as molecular 
chaperones, preventing protein aggregation 
under stress conditions (Horwitz, 2003). β- 
and γ-Crystallins form a highly ordered 
structural network, maintaining transparency 
through high solubility and precise 
molecular spacing (Slingsby & Wistow, 
2014). 
 
With aging, crystallins undergo extensive 
post-translational modifications, including 
oxidation, deamidation, fragmentation, and 
glycation (Hains & Truscott, 2007). These 
alterations compromise solubility and 
promote aggregation. For instance, 
oxidation of methionine and cysteine 
residues in γ-crystallins triggers protein 
denaturation, while UV exposure 
accelerates photooxidation (Truscott, 2005). 
Accumulation of modified proteins leads to 
light scattering and cataract formation 
(Michael & Bron, 2011). 
 
The avascular nature of the lens 
necessitates reliance on intrinsic antioxidant 
defenses (e.g., glutathione, ascorbate) and 
α-crystallin chaperone activity. However, 
with age, glutathione levels decline, and 
chaperones become increasingly engaged 
in counteracting damaged proteins, thereby 
losing their protective capacity (Kantorow et 
al., 2020). In vitro studies confirm that 
oxidized crystallins form protease-resistant 
aggregates (Sharma & Santhoshkumar, 
2009). 
 
Cataracts affect approximately 50% of 
individuals over the age of 80 (Asbell et al., 
2005). Surgical lens replacement remains 
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the only effective treatment, underscoring 
the need for preventive strategies. 
Promising approaches involve the 
development of antioxidants and 
chaperone-mimetic molecules designed to 
stabilize crystallins and delay aggregation 
(Makley et al., 2015). 

DNA in Postmitotic Cells 
Postmitotic cells, such as neurons and 
cardiomyocytes, lose their ability to divide 
following terminal differentiation. 
Consequently, their DNA does not undergo 
replication, making repair mechanisms the 
sole defense against genomic damage. 
With age, the efficiency of these repair 
systems declines, leading to the 
accumulation of mutations linked to 
neurodegeneration and cellular senescence 
(Lodato et al., 2018). 
 
Unlike proliferative cells, where replication 
errors can be corrected in subsequent cell 
cycles, postmitotic cells depend entirely on 
base excision repair (BER), nucleotide 
excision repair (NER), and homologous 
recombination mechanisms (Hoeijmakers, 
2009). However, chronic exposure to 
oxidative stress and environmental insults 
overwhelms these repair pathways 
(Maynard et al., 2015). 
 
Key contributors to DNA damage include 
reactive oxygen species (ROS) generated 
by mitochondria and exogenous factors 
such as UV radiation and chemical 
carcinogens. ROS induce base oxidation, 
strand breaks, and DNA-protein crosslinks 
(Halliwell, 2013). Neurons are particularly 
vulnerable due to their high metabolic 
demands and limited antioxidant defenses 
(Madabhushi et al., 2014). 
 

Murine studies indicate that the activity of 
BER enzymes, such as OGG1, declines 
with age (López-Otín et al., 2013). The 
accumulation of oxidized bases, such as 
8-oxoG, disrupts transcription and triggers 
apoptotic pathways (Lu et al., 2004). 
Additionally, age-related downregulation of 
repair genes like XRCC1 and PARP1 has 
been observed in neuronal populations 
(Fischer et al., 2016). 
 
Somatic mutations in neurons are 
associated with neurodegenerative 
disorders, including Alzheimer's and 
Parkinson's disease (Jiang et al., 2017). In 
cardiomyocytes, accumulated DNA damage 
has been implicated in arrhythmias and 
heart failure (Oh et al., 2020). Potential 
therapeutic interventions include enhancing 
DNA repair enzyme activity (e.g., NAD+ 
boosters to stimulate PARP1) and 
employing mitochondrial-targeted 
antioxidants (Verdin, 2015). 

Nuclei in Postmitotic Cells 
The nuclei of neurons and other 
non-dividing cells do not undergo 
replication, making their components, such 
as nuclear pores and lamina, particularly 
susceptible to age-related damage 
(D’Angelo et al., 2009). 
 
The nuclear lamina, which is composed of 
lamin proteins, provides mechanical stability 
and plays a crucial role in chromatin 
organization (Gruenbaum & Foisner, 2015). 
Nuclear pore complexes (NPCs) are 
responsible for regulating the transport of 
molecules between the cytoplasm and the 
nucleus. In neurons, NPCs contain proteins 
such as Nup107 and Nup133, which exhibit 
an extremely low turnover rate (Savas et al., 
2012). 
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With aging, lamin proteins accumulate 
oxidative modifications and cross-linking 
events, leading to fragmentation of the 
nuclear envelope (Hernandez et al., 2010). 
Mutations in the LMNA gene, which 
encodes lamin A, are associated with 
progeria, a syndrome characterized by 
accelerated aging (Scaffidi & Misteli, 2006). 
In neurons, NPC dysfunction disrupts RNA 
and protein transport, contributing to 
neurodegenerative processes (Grima et al., 
2017). 
 
Compromised nuclear envelope integrity 
triggers stress response pathways, 
including p53-dependent apoptosis (Ivanov 
et al., 2013). In Alzheimer’s disease, tau 
protein aggregates interfere with 
lamin-chromatin interactions, exacerbating 
transcriptional instability (Frost et al., 2014). 
 
Pharmacological approaches such as 
farnesyltransferase inhibitors are being 
investigated for their potential to correct 
lamin defects in progeria (Capell et al., 
2005). Additionally, antioxidant compounds 
are being explored as a means to slow 
down the oxidative degradation of nuclear 
proteins (Höhn et al., 2017). 

Cilia in Retinal Photoreceptors 
Photoreceptor cilia are highly specialized 
organelles responsible for converting light 
into neural signals. Their inability to 
regenerate after damage results in 
irreversible vision loss (Wheway et al., 
2018). 
 
These cilia possess an axoneme composed 
of microtubules in a 9+0 arrangement and 
contain intraflagellar transport (IFT) 
complexes that mediate protein trafficking 

(Pazour & Witman, 2003). While the outer 
segment of photoreceptors undergoes 
continuous renewal through the turnover of 
rhodopsin-containing disks, the basal 
segment of the cilium remains structurally 
stable (Insinna & Besharse, 2008). 
 
Mutations in genes encoding ciliary 
proteins, such as RPGR and CEP290, 
impair rhodopsin transport and lead to 
retinal degenerative disorders such as 
retinitis pigmentosa (Hartong et al., 2006). 
Oxidative stress further accelerates 
axoneme degeneration, particularly in 
age-related macular degeneration (AMD) 
(Kaarniranta et al., 2020). 
 
Photoreceptor ciliary loss is a key 
contributor to hereditary retinal dystrophies, 
including Stargardt disease (Molday et al., 
2015). In AMD, lipofuscin accumulation in 
the retinal pigment epithelium (RPE) 
disrupts ciliary metabolism, exacerbating 
degeneration (Sparrow et al., 2012). Gene 
therapy approaches, such as voretigene 
neparvovec for RPE65 mutations, aim to 
restore ciliary function (Russell et al., 2017). 
Future therapies focus on 
CRISPR-mediated mutation correction and 
antioxidant strategies, such as lutein 
supplementation, to mitigate oxidative 
damage (Burnight et al., 2017). 

Selective and Irreversible 
Inheritance of Centrioles 
Unlike many cellular components that 
undergo limited renewal, centrioles are 
remarkable in their complete inability to 
regenerate. These cylindrical 
microtubule-based structures play a 
fundamental role in establishing the 
asymmetric molecular composition of mitotic 
poles and in ciliogenesis. In both postmitotic 

© Under CC BY-NC-ND 4.0 International License | Longevity Horizon, 1(3). ISSN: 088-4063 

7 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://longevity.ge/index.php/longhoriz


 

and stem cells, centrioles remain 
unchanged throughout the cell’s lifetime. 
Their selective inheritance during 
asymmetric cell divisions influences the fate 
of daughter cells and impacts tissue aging 
(Wang et al., 2021). New centrioles are 
inherited by daughter cells that commit to 
differentiation—cells destined for short-lived 
lineages or, in some cases, postmitotic 
fates. 
 
Centrioles consist of nine triplet 
microtubules stabilized by proteins such as 
SAS-6 and CEP135. In non-dividing cells, 
they function as basal bodies for primary 
cilia, which regulate key signaling pathways, 
including Hedgehog and Wnt (Fu et al., 
2015). Stem cells exhibit extraordinary 
centriole longevity, with some persisting for 
the entire lifespan of the organism (Bazzi & 
Anderson, 2014). 
 
During asymmetric stem cell division (e.g., 
in neural and epithelial tissues), the “older” 
mother centrioles are selectively retained by 
the self-renewing stem cell, while the 
“younger” daughter centrioles are passed to 
the differentiating progeny (Pazour & 
Witman, 2003). This segregation is 
regulated by proteins such as POC1 and 
CEP120, which serve as markers of 
centriole age (Ye et al., 2021). Studies in 
Drosophila suggest that cells inheriting older 
centrioles exhibit greater stress resistance 
and slower aging (Rogers & Rogers, 2008). 
 
Because centrioles do not undergo renewal, 
they accumulate oxidative damage and 
post-translational modifications over time. 
For instance, carbonylation of centrosomal 
proteins impairs microtubule assembly, 
potentially contributing to aneuploidy and 
age-related declines in tissue regeneration 
(Löhr et al., 2017). In neurons, defective 

centrioles are associated with primary cilia 
loss and disrupted signaling pathways, 
which are implicated in Alzheimer’s disease 
(Guemez-Gamboa et al., 2014). 
 
Centriole dysfunction is linked to progeria, 
neurodegeneration, and cancer. Mutations 
in centrosomal genes, such as PLK4 and 
CEP152, result in microcephaly and 
developmental abnormalities (Nigg & 
Holland, 2018). Over time, the accumulation 
of damaged centrioles in stem cells 
compromises their ability to undergo 
asymmetric division, leading to stem cell 
exhaustion (Liang et al., 2020) and a 
decline in proliferation rates. 
 
Potential interventions focus on stabilizing 
centrioles through oxidative stress inhibitors 
(e.g., N-acetylcysteine) and modulating 
proteins that regulate centriole inheritance 
(Choi et al., 2020). Gene-editing 
technologies such as CRISPR/Cas9 are 
also being explored to correct defects in 
centrosomal components (Zhong et al., 
2022). Given the profound impact of 
centrioles on aging and their role in cellular 
asymmetry, future approaches may involve 
de novo centriole synthesis in stem cells to 
restore division rates and maintain their 
regulatory influence over DNA, RNA, and 
protein activities. Notably, once centrioles 
fulfill their primary function of asymmetrically 
distributing molecular components during 
mitosis, they are either eliminated (e.g., in 
oocytes) or inactivated (e.g., in neurons). 
However, in stem cells—critical for tissue 
regeneration—centrioles are never 
eliminated or inactivated. Despite selective 
retention of older centrioles in self-renewing 
stem cells, these structures remain 
essential for sustaining the regenerative 
potential of tissues. 
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Oocytes in Women 
Oocytes, which are the female gametes, 
originate during the embryonic stage and 
remain stored in the ovaries until 
reproductive maturity is reached. Due to 
their incapacity for renewal, these cells are 
highly susceptible to accumulating damage 
over time, ultimately leading to reduced 
fertility and an increased risk of aneuploidy 
(Titus et al., 2013). 
 
The process of oogenesis initiates the 
formation of oocytes around the 20th week 
of intrauterine development. At this point, 
these cells enter meiotic prophase I and 
remain arrested in this state until puberty. A 
female is born with approximately 1 to 2 
million oocytes, but by the time she reaches 
menopause, this number declines 
dramatically to around 1,000 (Wallace & 
Kelsey, 2010). 
 
Prolonged dormancy of oocytes, which can 
last up to five decades, leads to the 
following detrimental consequences: 

● Oxidative stress: Mitochondria in 
oocytes generate reactive oxygen 
species (ROS), which cause 
damage to mitochondrial DNA 
(mtDNA) and proteins, thereby 
impairing cellular function 
(May-Panloup et al., 2016). 

● Epigenetic alterations: Changes in 
DNA methylation patterns and 
histone modifications disrupt gene 
expression, leading to functional 
decline (Xiong et al., 2020). 

● Mitochondrial quality deterioration: A 
reduction in mtDNA copy number 
and dysfunction of the electron 
transport chain (ETC) results in 
decreased ATP production, which 

compromises cellular energy 
homeostasis (Van Blerkom, 2011). 

With advancing age, several risks increase: 
● Chromosomal abnormalities: 

Between 70% and 90% of embryos 
conceived by women older than 40 
exhibit aneuploidy (Franasiak et al., 
2014). 

● Declining fertility: By the age of 35, 
the probability of conceiving 
naturally is reduced by 50% 
compared to younger women 
(Broekmans et al., 2007). 

● Spontaneous miscarriages: The rate 
of pregnancy loss rises from 10% in 
women aged 20–30 years to nearly 
50% by age 45 (Nybo Andersen et 
al., 2000). 

Therapeutic Strategies 
● Oocyte cryopreservation: Preserving 

oocytes at a younger age helps 
maintain fertility potential (Cobo et 
al., 2018). 

● Mitochondrial replacement therapy: 
Transplantation of mitochondria from 
donor oocytes enhances metabolic 
efficiency and energy production 
(Fakih et al., 2021). 

● Antioxidant supplementation: 
Coenzyme Q10 and melatonin have 
demonstrated efficacy in mitigating 
oxidative stress, thereby improving 
oocyte quality (Rudick et al., 2019). 

Neurons in the Brain 
Neurons within the central nervous system 
(CNS) are classified as post-mitotic cells, 
meaning they do not undergo division once 
differentiation is complete. Their axons and 
dendrites, in contrast to peripheral nerves, 
exhibit extremely limited regenerative 
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potential, rendering them highly vulnerable 
to injury, neurodegenerative diseases, and 
age-related deterioration (He & Jin, 2016). 
Neurons are composed of a soma (cell 
body), dendrites, and a myelin-covered 
axon. In the CNS, axons are ensheathed by 
oligodendrocytes, which, unlike Schwann 
cells in the peripheral nervous system, 
secrete growth-inhibitory molecules such as 
Nogo-A, thereby actively preventing axonal 
regeneration (Schwab & Strittmatter, 2014). 
Additionally, the formation of a glial scar 
following trauma creates both physical and 
biochemical barriers that obstruct axonal 
repair (Bradbury & Burnside, 2019). 

Barriers to Regeneration 
● Expression of inhibitory molecules: 

Proteins such as Nogo, MAG, and 
OMgp interact with the NgR receptor 
on axons, activating the Rho-kinase 
pathway, which destabilizes the 
cytoskeleton and halts regrowth 
(Geoffroy & Zheng, 2014). 

● Insufficient activation of regenerative 
pathways: Unlike peripheral 
neurons, CNS neurons exhibit 
minimal expression of 
pro-regenerative genes, such as 
GAP-43 and STAT3, even following 
injury (Tedeschi & Bradke, 2017). 

● Energy deficits: Mitochondrial 
dysfunction in long axons results in 
ATP shortages, impairing the 
remodeling of membranes and the 
synthesis of essential proteins 
(Zheng et al., 2021). 

Clinical Implications 
● Neurodegenerative disorders: 

Conditions like Alzheimer’s and 
Parkinson’s disease are 
characterized by progressive 

neuronal loss, which the body 
cannot adequately compensate for 
(Hou et al., 2019). 

● Spinal cord injuries: Damage to 
axons in the spinal cord leads to 
irreversible loss of motor and 
sensory function (Ahuja et al., 2017). 

● Aging-related cognitive decline: The 
accumulation of tau protein and 
β-amyloid disrupts synaptic 
plasticity, exacerbating cognitive 
impairment (Scheltens et al., 2021). 

Potential Therapeutic Approaches 
● Inhibition of growth-inhibitory 

signaling: Antibodies targeting 
Nogo-A, such as Ozanezumab, have 
demonstrated axonal regeneration 
potential in preclinical models 
(Kucher et al., 2018). 

● Enhancement of endogenous repair 
mechanisms: Administration of 
growth factors (BDNF, NT-3) and 
CRISPR-based gene activation 
(Lin28) have been explored as 
means to stimulate neuronal 
regeneration (Byrne et al., 2020). 

● Cell therapy: Transplantation of 
induced pluripotent stem cells 
(iPSCs) and oligodendrocytes has 
shown promise in restoring myelin 
integrity and synaptic function 
(Assinck et al., 2017). 

Oocytes in Women 
Oocytes, which are the female gametes, 
originate during the embryonic stage and 
remain stored in the ovaries until 
reproductive maturity is reached. Due to 
their incapacity for renewal, these cells are 
highly susceptible to accumulating damage 
over time, ultimately leading to reduced 
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fertility and an increased risk of aneuploidy 
(Titus et al., 2013). 
 
The process of oogenesis initiates the 
formation of oocytes around the 20th week 
of intrauterine development. At this point, 
these cells enter meiotic prophase I and 
remain arrested in this state until puberty. A 
female is born with approximately 1 to 2 
million oocytes, but by the time she reaches 
menopause, this number declines 
dramatically to around 1,000 (Wallace & 
Kelsey, 2010). 
 
Prolonged dormancy of oocytes, which can 
last up to five decades, leads to the 
following detrimental consequences: 

● Oxidative stress: Mitochondria in 
oocytes generate reactive oxygen 
species (ROS), which cause 
damage to mitochondrial DNA 
(mtDNA) and proteins, thereby 
impairing cellular function 
(May-Panloup et al., 2016). 

● Epigenetic alterations: Changes in 
DNA methylation patterns and 
histone modifications disrupt gene 
expression, leading to functional 
decline (Xiong et al., 2020). 

● Mitochondrial quality deterioration: A 
reduction in mtDNA copy number 
and dysfunction of the electron 
transport chain (ETC) results in 
decreased ATP production, which 
compromises cellular energy 
homeostasis (Van Blerkom, 2011). 

With advancing age, several risks increase: 
● Chromosomal abnormalities: 

Between 70% and 90% of embryos 
conceived by women older than 40 
exhibit aneuploidy (Franasiak et al., 
2014). 

● Declining fertility: By the age of 35, 
the probability of conceiving 

naturally is reduced by 50% 
compared to younger women 
(Broekmans et al., 2007). 

● Spontaneous miscarriages: The rate 
of pregnancy loss rises from 10% in 
women aged 20–30 years to nearly 
50% by age 45 (Nybo Andersen et 
al., 2000). 

Therapeutic Strategies 
● Oocyte cryopreservation: Preserving 

oocytes at a younger age helps 
maintain fertility potential (Cobo et 
al., 2018). 

● Mitochondrial replacement therapy: 
Transplantation of mitochondria from 
donor oocytes enhances metabolic 
efficiency and energy production 
(Fakih et al., 2021). 

● Antioxidant supplementation: 
Coenzyme Q10 and melatonin have 
demonstrated efficacy in mitigating 
oxidative stress, thereby improving 
oocyte quality (Rudick et al., 2019). 

Neurons in the Brain 
Neurons within the central nervous system 
(CNS) are classified as post-mitotic cells, 
meaning they do not undergo division once 
differentiation is complete. Their axons and 
dendrites, in contrast to peripheral nerves, 
exhibit extremely limited regenerative 
potential, rendering them highly vulnerable 
to injury, neurodegenerative diseases, and 
age-related deterioration (He & Jin, 2016). 
Neurons are composed of a soma (cell 
body), dendrites, and a myelin-covered 
axon. In the CNS, axons are ensheathed by 
oligodendrocytes, which, unlike Schwann 
cells in the peripheral nervous system, 
secrete growth-inhibitory molecules such as 
Nogo-A, thereby actively preventing axonal 
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regeneration (Schwab & Strittmatter, 2014). 
Additionally, the formation of a glial scar 
following trauma creates both physical and 
biochemical barriers that obstruct axonal 
repair (Bradbury & Burnside, 2019). 

Barriers to Regeneration 
● Expression of inhibitory molecules: 

Proteins such as Nogo, MAG, and 
OMgp interact with the NgR receptor 
on axons, activating the Rho-kinase 
pathway, which destabilizes the 
cytoskeleton and halts regrowth 
(Geoffroy & Zheng, 2014). 

● Insufficient activation of regenerative 
pathways: Unlike peripheral 
neurons, CNS neurons exhibit 
minimal expression of 
pro-regenerative genes, such as 
GAP-43 and STAT3, even following 
injury (Tedeschi & Bradke, 2017). 

● Energy deficits: Mitochondrial 
dysfunction in long axons results in 
ATP shortages, impairing the 
remodeling of membranes and the 
synthesis of essential proteins 
(Zheng et al., 2021). 

Clinical Implications 
● Neurodegenerative disorders: 

Conditions like Alzheimer’s and 
Parkinson’s disease are 
characterized by progressive 
neuronal loss, which the body 
cannot adequately compensate for 
(Hou et al., 2019). 

● Spinal cord injuries: Damage to 
axons in the spinal cord leads to 
irreversible loss of motor and 
sensory function (Ahuja et al., 2017). 

● Aging-related cognitive decline: The 
accumulation of tau protein and 
β-amyloid disrupts synaptic 

plasticity, exacerbating cognitive 
impairment (Scheltens et al., 2021). 

Potential Therapeutic Approaches 
● Inhibition of growth-inhibitory 

signaling: Antibodies targeting 
Nogo-A, such as Ozanezumab, have 
demonstrated axonal regeneration 
potential in preclinical models 
(Kucher et al., 2018). 

● Enhancement of endogenous repair 
mechanisms: Administration of 
growth factors (BDNF, NT-3) and 
CRISPR-based gene activation 
(Lin28) have been explored as 
means to stimulate neuronal 
regeneration (Byrne et al., 2020). 

● Cell therapy: Transplantation of 
induced pluripotent stem cells 
(iPSCs) and oligodendrocytes has 
shown promise in restoring myelin 
integrity and synaptic function 
(Assinck et al., 2017). 

Dental Enamel 
Dental enamel is the hardest tissue in the 
human body, consisting of approximately 
96% mineral content, primarily in the form of 
hydroxyapatite. It is acellular and lacks the 
ability to regenerate, rendering any 
structural damage irreversible without 
medical intervention (Selwitz et al., 2007). 
Enamel formation is orchestrated by 
ameloblasts during the process of 
amelogenesis, which concludes before 
tooth eruption. Once enamel is fully formed, 
ameloblasts undergo programmed cell 
death, leaving the enamel without intrinsic 
mechanisms for self-repair (Simmer et al., 
2010). Hydroxyapatite crystals within 
enamel are organized into prismatic 
structures, which enhance mechanical 
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strength but contribute to brittleness under 
uneven loading conditions (Beniash et al., 
2019). 

Causes of Enamel Degradation 
● Caries: Bacteria, particularly 

Streptococcus mutans, metabolize 
sugars, producing acids that 
demineralize enamel (Pitts et al., 
2017). 

● Erosion: Dietary acids (from citrus 
fruits, carbonated beverages) and 
gastric acid (in cases of acid reflux) 
dissolve the outer enamel layer 
(Lussi et al., 2012). 

● Mechanical wear: Bruxism and 
improper tooth brushing techniques 
contribute to microcracks and 
enamel thinning (Wetselaar et al., 
2016). 

Restorative Strategies 
● Filling materials: Composite resins 

and amalgam are used to restore 
cavities but lack the ability to 
integrate seamlessly with natural 
enamel (Demarco et al., 2012). 

● Veneers and crowns: Ceramic 
restorations reconstruct lost enamel 
structure but require substantial 
removal of existing tooth material 
(Peumans et al., 2000). 

● Remineralization techniques: 
Nano-hydroxyapatite particles and 
bioactive peptides (such as P11-4) 
promote mineral deposition in 
early-stage enamel defects (Kirkham 
et al., 2020). 

Discussion 
The concept of irreparable structures within 
an organism presents a unique paradox: 
their longevity is critical for maintaining 
specialized functions, yet their inability to 
regenerate renders them vulnerable to 
age-related damage. However, the notion of 
"irreparability" is often relative, depending 
on the type of cells, organelles, and 
molecular context in which they exist. 

The Relativity of Irreparability: 
Cellular and Evolutionary 
Context 
The capacity for renewal varies even among 
structurally similar components. For 
example, mitochondria in skeletal muscle 
undergo partial replacement via mitophagy 
and biogenesis, processes activated by 
physical exercise through AMPK-dependent 
pathways (Lira et al., 2013). In contrast, 
mitochondrial turnover in neurons and 
cardiomyocytes is severely restricted due to 
the low activity of the PINK1/Parkin 
pathway, a limitation that is crucial for 
preserving long-term synaptic connections 
and contractile function (Stevens et al., 
2015). On the other hand, centrioles exhibit 
absolute irreparability; attempts to artificially 
regenerate them in somatic cells lead to 
aneuploidy and uncontrolled proliferation, 
processes closely linked to oncogenesis 
(Nigg & Holland, 2018). Interestingly, during 
embryogenesis, centrioles are synthesized 
de novo following the initial cleavage 
divisions, highlighting an evolutionary 
trade-off between stability and plasticity 
(Wang et al., 2021). This phenomenon may 
be linked to the necessity of preventing the 
inheritance of damaged centrioles, aligning 
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with the "selfish organelle" hypothesis (Satir 
& Christensen, 2007). 

Accumulation of Damage and 
Aging Theory: From Molecular 
Chaos to Systemic Collapse 
Long-lived structures act as "reservoirs" of 
cellular stress, supporting the "garbage 
accumulation" theory (López-Otín et al., 
2013). Several examples illustrate this 
concept: 

● Lipofuscin accumulation in neuronal 
lysosomes impairs autophagy by 
binding to cathepsins, thereby 
inhibiting the degradation of 
damaged proteins and exacerbating 
oxidative stress, ultimately triggering 
apoptosis through caspase 
activation (Höhn & Grune, 2013). 

● Denatured crystallins in the lens 
form amyloid-like aggregates, which 
scatter light and provoke 
inflammatory responses via NLRP3 
inflammasome activation (Sharma et 
al., 2020). 

● Damaged nuclear pores in neurons 
disrupt mRNA transport, leading to 
the accumulation of tau protein and 
β-amyloid, both key markers of 
Alzheimer's disease (Grima et al., 
2017). 

These processes are interconnected: 
dysfunction of one structure (e.g., 
mitochondria) accelerates damage in others 
(e.g., nuclear DNA), creating a vicious cycle 
of aging (Sun et al., 2016). For instance, 
mitochondrial ROS oxidize histones, 
impairing DNA repair by suppressing 
PARP1 activity (Fang et al., 2016). 

Practical Implications and 
Therapeutic Strategies: 
Balancing Innovation and Risk 
Understanding the mechanisms underlying 
irreparability opens avenues for: 

Combating Age-Related Diseases 
● Targeted lipofuscin clearance using 

senolytics (e.g., fisetin) selectively 
eliminates senescent cells, 
extending lifespan in model 
organisms by up to 30% 
(Yousefzadeh et al., 2018). 

● CRISPR-based correction of 
mutations in postmitotic neurons 
using adeno-associated viruses 
(AAV) shows promise for treating 
Huntington's and Parkinson's 
diseases (Moreno et al., 2022). 

Regenerative Medicine 
● Biomimetic materials, such as 

hydroxyapatite nanoparticles 
functionalized with amelogenin 
peptides, induce enamel 
remineralization, restoring up to 80% 
of its original strength (Ruan et al., 
2016). 

● Mitochondrial transplantation via 
microinjection into oocytes enhances 
fertility in women experiencing 
age-related decline in egg quality, 
increasing implantation rates by 20% 
(Fakih et al., 2021). 

However, interventions targeting irreparable 
systems require caution. For example, 
promoting axonal regeneration in the CNS 
through Nogo-A inhibition can lead to 
neuropathic pain due to abnormal growth of 
sensory fibers (Geoffroy & Zheng, 2014). 
Similarly, overexpression of chaperones 
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such as α-crystallin, while slowing cataract 
progression, may disrupt lens transparency 
by inducing excessively dense protein 
clustering (Makley et al., 2015). 

Future Directions 
Observing organisms with near-limitless 
regenerative capacity, such as 
planarians—whose cells containing 
centrioles do not divide—it becomes evident 
that species with dividing cells that possess 
centrioles have sacrificed regenerative 
potential in favor of specialization. Loss of 
mitotic activity in such species correlates 
with other evolutionary advantages. For 
instance, in neurons, this trade-off has 
facilitated the formation of stable neural 
networks essential for long-term memory 
but has also rendered the brain susceptible 
to injury (Herculano-Houzel, 2014). 
Similarly, enamel mineralization provides 
mechanical protection but precludes 
self-repair. 
 
Promising research directions include: 

● Development of "smart" biomaterials 
that mimic the hierarchical 
architecture of natural tissues (e.g., 
gradient hydrogels for axonal repair). 

● Utilizing artificial intelligence to 
predict damage accumulation sites 
and tailor antioxidant therapies to 
individual needs. 

● Investigating epigenetic clocks to 
assess the "age" of irreparable 
structures and determine optimal 
intervention points. 

A particularly intriguing question is the 
accumulation of aged centrioles in stem 
cells. 

Conclusion 
Aging is a multifaceted process driven by 
the fundamental thermodynamic principle of 
entropy accumulation. In biological systems, 
entropy manifests as progressive molecular 
disorder caused by oxidative damage, DNA 
repair errors, and protein dysfunction. The 
organism continuously counteracts entropy 
by renewing cells and structures: 
hepatocytes regenerate every 150–200 
days, skin epidermis every 2–4 weeks, and 
erythrocytes every 120 days (López-Otín et 
al., 2013). However, certain long-lived, 
irreparable molecules, organelles, and 
tissues serve as "entropy reservoirs," 
accelerating aging and predisposing 
individuals to age-related diseases. 

Irreparable Structures as 
Entropy Accumulators 

Molecular Level 
● Lens crystallins, synthesized during 

embryonic development, remain 
unchanged throughout life. Their 
post-translational modifications 
(oxidation, glycation) promote 
aggregation, leading to cataracts—a 
major cause of blindness (Truscott, 
2005). 

● DNA in postmitotic cells (neurons, 
cardiomyocytes) accumulates 
mutations due to inefficient repair, 
correlating with neurodegeneration 
and heart failure (Lodato et al., 
2018). 

Organelle Level 
● Mitochondria in neurons lose 

mitophagy capacity, accumulating 
defective mtDNA and generating 
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excessive reactive oxygen species 
(ROS), which trigger apoptosis (Sun 
et al., 2016). 

● Centrioles in stem cells selectively 
inherit "old" maternal structures, 
disrupting asymmetric division and 
diminishing tissue regenerative 
potential (Wang et al., 2021). 

Tissue Level 
● Tooth enamel, devoid of cells, 

cannot regenerate, and its 
demineralization leads to irreversible 
structural damage (Selwitz et al., 
2007). 

● CNS neurons fail to regenerate 
axons following injury, attributed to 
the expression of growth inhibitors 
(Nogo-A) and the formation of glial 
scars (He & Jin, 2016). 

Centrioles: The Principal 
"Conductors" of Cellular 
Entropy 
Centrioles, unlike other cellular structures, 
occupy a unique position in the hierarchy of 
aging. They not only resist renewal but 
actively accumulate entropy, passing it on to 
subsequent generations of cells. In stem 
cells, "old" maternal centrioles are inherited 
by the cell maintaining stem cell properties, 
while "new" daughter centrioles are directed 
toward differentiating cells (Bazzi & 
Anderson, 2014). This mechanism, which is 
evolutionarily advantageous for maintaining 
the stem cell pool, has a downside: 
Accumulation of Damage: 

● Oxidation of centrosomal proteins 
(e.g., SAS-6) disrupts microtubule 
assembly, leading to chromosomal 
instability (Löhr et al., 2017). 

● Aged centrioles lose the ability to 
form primary cilia, which blocks 
crucial signaling pathways 
(Hedgehog, Wnt) required for tissue 
regeneration (Satir & Christensen, 
2007). 

Impact on Gene Expression: 
● Centrioles regulate the spatial 

organization of the nucleus through 
interactions with lamins and nuclear 
pores. Their dysfunction impairs 
mRNA transport and leads to the 
accumulation of damaged proteins 
(D’Angelo et al., 2009). 

● In neurons, defective centrioles are 
associated with tau protein 
aggregation, a hallmark of 
Alzheimer’s disease (Frost et al., 
2014). 

Association with Oncogenesis: 
● Attempts at regenerating centrioles 

in somatic cells result in 
supernumerary centrioles, causing 
aneuploidy and uncontrolled cell 
division (Nigg & Holland, 2018). 

Thus, centrioles become key accumulators 
of entropy, linking cellular aging to systemic 
dysfunction. Their stability, necessary for 
asymmetric division in stem cells, comes at 
the cost of progressively accumulating 
damage in tissues. 

Strategies to Combat Entropy: 
From Theory to Practice 
The body attempts to minimize entropy in 
irreparable structures through 
compensatory mechanisms: 

● Autophagy: Removal of damaged 
organelles (e.g., mitochondria) 
through lysosomal degradation 
(Rubinsztein et al., 2015). 

● Antioxidant Systems: Glutathione 
and superoxide dismutase neutralize 
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ROS, slowing protein and DNA 
oxidation (Sies et al., 2017). 

● Molecular Chaperones: α-Crystallins 
prevent the aggregation of 
denatured proteins in the lens 
(Horwitz, 2003). 

However, these systems are not flawless. 
For example, autophagy in neurons is 
suppressed with age due to the 
accumulation of lipofuscin (Höhn & Grune, 
2013), and antioxidants are unable to fully 
neutralize mitochondrial ROS in 
cardiomyocytes (Brown et al., 2017). 
 
Promising Therapeutic Approaches: 

● Senolytics: Drugs (e.g., fisetin, 
dasatinib + quercetin) selectively 
eliminate senescent cells, reducing 
the burden of "molecular waste" 
(Yousefzadeh et al., 2018). 

● Gene Therapy: 
○ CRISPR/Cas9 correction of 

mutations in post-mitotic 
neurons (Moreno et al., 
2022). 

○ Activation of telomerase to 
extend the lifespan of stem 
cells (Jaskelioff et al., 2011). 

● Biomimetic Materials: 
○ Hydroxyapatite nanoparticles 

functionalized with 
amelogenin peptides restore 
tooth enamel (Ruan et al., 
2016). 

○ Artificial chaperones stabilize 
crystallins (Makley et al., 
2015). 

● Mitochondrial Replacement Therapy: 
Mitochondrial transplantation into 
oocytes improves fertility (Fakih et 
al., 2021). 

Centrioles as a Target for 
Anti-Aging Therapies 
Considering the role of centrioles in entropy 
accumulation, their stabilization or 
controlled replacement could become a 
breakthrough in combating aging: 

● Oxidative Stress Inhibitors: 
N-Acetylcysteine slows the 
carbonylation of centrosomal 
proteins (Choi et al., 2020). 

● Regulation of Asymmetric Division: 
Modulating proteins such as POC1 
and CEP120 enhances the 
inheritance of "young" centrioles in 
stem cells (Ye et al., 2021). 

● CRISPR Editing: Correcting 
mutations in centriole genes (PLK4, 
CEP152) prevents chromosomal 
abnormalities (Zhong et al., 2022). 

However, any intervention requires caution. 
For example, excessive activation of 
centriole biogenesis can trigger cancer 
(Nigg & Holland, 2018). 

Concluding Remarks 
● Entropy as the Driving Force of 

Aging: Irreparable structures 
become "traps" for molecular chaos, 
disrupting tissue homeostasis. 

● Centrioles as Key Players: Their 
selective inheritance in stem cells 
links cellular aging to systemic 
dysfunction. 

● A Comprehensive Approach to 
Therapy: Combining senolytics, 
gene editing, and biomimetic 
materials can slow the accumulation 
of entropy. The strategy involves 
removing cells with old centrioles 
and replacing them with cells 
containing new centrioles. However, 
it must be ensured that new 
centrioles are functionally identical to 
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the old ones with respect to 
differentiation potential. 

Future research should address the 
following questions: 

● How can centrioles be "rejuvenated" 
without the risk of oncogenesis? 

● Can regeneration be reactivated in 
strictly post-mitotic tissues (e.g., 
neurons, lens)? 

● What role do epigenetic changes in 
irreparable structures play in aging? 

Understanding these mechanisms will pave 
the way for radically extending healthspan, 
overcoming the limitations imposed by 
entropy. 
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